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2.3 Case study: malaria vaccine

EXAMPLE 2.30

Suppose your professor splits the students in class into two groups: students on the left and students
on the right. If p̂

L
and p̂

R
represent the proportion of students who own an Apple product on the

left and right, respectively, would you be surprised if p̂
L

did not exactly equal p̂
R

?

While the proportions would probably be close to each other, it would be unusual for them to be
exactly the same. We would probably observe a small difference due to chance.

GUIDED PRACTICE 2.31

If we don’t think the side of the room a person sits on in class is related to whether the person
owns an Apple product, what assumption are we making about the relationship between these two
variables?25

2.3.1 Variability within data

We consider a study on a new malaria vaccine called PfSPZ. In this study, volunteer patients
were randomized into one of two experiment groups: 14 patients received an experimental vaccine
or 6 patients received a placebo vaccine. Nineteen weeks later, all 20 patients were exposed to a
drug-sensitive malaria virus strain; the motivation of using a drug-sensitive strain of virus here is for
ethical considerations, allowing any infections to be treated effectively. The results are summarized
in Figure 2.29, where 9 of the 14 treatment patients remained free of signs of infection while all of
the 6 patients in the control group patients showed some baseline signs of infection.

outcome

infection no infection Total
vaccine 5 9 14

treatment
placebo 6 0 6
Total 11 9 20

Figure 2.29: Summary results for the malaria vaccine experiment.

GUIDED PRACTICE 2.32

Is this an observational study or an experiment? What implications does the study type have on
what can be inferred from the results?26

In this study, a smaller proportion of patients who received the vaccine showed signs of an
infection (35.7% versus 100%). However, the sample is very small, and it is unclear whether the
difference provides convincing evidence that the vaccine is effective.

25We would be assuming that these two variables are independent.
26The study is an experiment, as patients were randomly assigned an experiment group. Since this is an experiment,

the results can be used to evaluate a causal relationship between the malaria vaccine and whether patients showed
signs of an infection.
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EXAMPLE 2.33

Data scientists are sometimes called upon to evaluate the strength of evidence. When looking at
the rates of infection for patients in the two groups in this study, what comes to mind as we try to
determine whether the data show convincing evidence of a real difference?

The observed infection rates (35.7% for the treatment group versus 100% for the control group)
suggest the vaccine may be effective. However, we cannot be sure if the observed difference represents
the vaccine’s efficacy or is just from random chance. Generally there is a little bit of fluctuation in
sample data, and we wouldn’t expect the sample proportions to be exactly equal, even if the truth
was that the infection rates were independent of getting the vaccine. Additionally, with such small
samples, perhaps it’s common to observe such large differences when we randomly split a group due
to chance alone!

Example 2.33 is a reminder that the observed outcomes in the data sample may not perfectly
reflect the true relationships between variables since there is random noise. While the observed
difference in rates of infection is large, the sample size for the study is small, making it unclear if
this observed difference represents efficacy of the vaccine or whether it is simply due to chance. We
label these two competing claims, H0 and HA, which are spoken as “H-nought” and “H-A”:

H0: Independence model. The variables treatment and outcome are independent. They have
no relationship, and the observed difference between the proportion of patients who developed
an infection in the two groups, 64.3%, was due to chance.

HA: Alternative model. The variables are not independent. The difference in infection rates of
64.3% was not due to chance, and vaccine affected the rate of infection.

What would it mean if the independence model, which says the vaccine had no influence on the
rate of infection, is true? It would mean 11 patients were going to develop an infection no matter
which group they were randomized into, and 9 patients would not develop an infection no matter
which group they were randomized into. That is, if the vaccine did not affect the rate of infection,
the difference in the infection rates was due to chance alone in how the patients were randomized.

Now consider the alternative model: infection rates were influenced by whether a patient re-
ceived the vaccine or not. If this was true, and especially if this influence was substantial, we would
expect to see some difference in the infection rates of patients in the groups.

We choose between these two competing claims by assessing if the data conflict so much with
H0 that the independence model cannot be deemed reasonable. If this is the case, and the data
support HA, then we will reject the notion of independence and conclude the vaccine was effective.

2.3.2 Simulating the study

We’re going to implement simulations, where we will pretend we know that the malaria vaccine
being tested does not work. Ultimately, we want to understand if the large difference we observed
is common in these simulations. If it is common, then maybe the difference we observed was purely
due to chance. If it is very uncommon, then the possibility that the vaccine was helpful seems more
plausible.

Figure 2.29 shows that 11 patients developed infections and 9 did not. For our simulation,
we will suppose the infections were independent of the vaccine and we were able to rewind back
to when the researchers randomized the patients in the study. If we happened to randomize the
patients differently, we may get a different result in this hypothetical world where the vaccine doesn’t
influence the infection. Let’s complete another randomization using a simulation.
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In this simulation, we take 20 notecards to represent the 20 patients, where we write down
“infection” on 11 cards and “no infection” on 9 cards. In this hypothetical world, we believe each
patient that got an infection was going to get it regardless of which group they were in, so let’s see
what happens if we randomly assign the patients to the treatment and control groups again. We
thoroughly shuffle the notecards and deal 14 into a vaccine pile and 6 into a placebo pile. Finally,
we tabulate the results, which are shown in Figure 2.30.

outcome

infection no infection Total
treatment vaccine 7 7 14
(simulated) placebo 4 2 6

Total 11 9 20

Figure 2.30: Simulation results, where any difference in infection rates is purely
due to chance.

GUIDED PRACTICE 2.34

What is the difference in infection rates between the two simulated groups in Figure 2.30? How does
this compare to the observed 64.3% difference in the actual data?27

2.3.3 Checking for independence

We computed one possible difference under the independence model in Guided Practice 2.34,
which represents one difference due to chance. While in this first simulation, we physically dealt out
notecards to represent the patients, it is more efficient to perform this simulation using a computer.
Repeating the simulation on a computer, we get another difference due to chance:

2

6
− 9

14
= −0.310

And another:

3

6
− 8

14
= −0.071

And so on until we repeat the simulation enough times that we have a good idea of what represents
the distribution of differences from chance alone. Figure 2.31 shows a stacked plot of the differences
found from 100 simulations, where each dot represents a simulated difference between the infection
rates (control rate minus treatment rate).

Note that the distribution of these simulated differences is centered around 0. We simulated
these differences assuming that the independence model was true, and under this condition, we
expect the difference to be near zero with some random fluctuation, where near is pretty generous
in this case since the sample sizes are so small in this study.

EXAMPLE 2.35

How often would you observe a difference of at least 64.3% (0.643) according to Figure 2.31? Often,
sometimes, rarely, or never?

It appears that a difference of at least 64.3% due to chance alone would only happen about 2% of
the time according to Figure 2.31. Such a low probability indicates a rare event.

274/6 − 7/14 = 0.167 or about 16.7% in favor of the vaccine. This difference due to chance is much smaller than
the difference observed in the actual groups.
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Figure 2.31: A stacked dot plot of differences from 100 simulations produced under
the independence model, H0, where in these simulations infections are unaffected
by the vaccine. Two of the 100 simulations had a difference of at least 64.3%, the
difference observed in the study.

The difference of 64.3% being a rare event suggests two possible interpretations of the results
of the study:

H0 Independence model. The vaccine has no effect on infection rate, and we just happened to
observe a difference that would only occur on a rare occasion.

HA Alternative model. The vaccine has an effect on infection rate, and the difference we
observed was actually due to the vaccine being effective at combatting malaria, which explains
the large difference of 64.3%.

Based on the simulations, we have two options. (1) We conclude that the study results do not
provide strong evidence against the independence model. That is, we do not have sufficiently strong
evidence to conclude the vaccine had an effect in this clinical setting. (2) We conclude the evidence
is sufficiently strong to reject H0 and assert that the vaccine was useful. When we conduct formal
studies, usually we reject the notion that we just happened to observe a rare event.28 So in this case,
we reject the independence model in favor of the alternative. That is, we are concluding the data
provide strong evidence that the vaccine provides some protection against malaria in this clinical
setting.

One field of statistics, statistical inference, is built on evaluating whether such differences are
due to chance. In statistical inference, data scientists evaluate which model is most reasonable given
the data. Errors do occur, just like rare events, and we might choose the wrong model. While we
do not always choose correctly, statistical inference gives us tools to control and evaluate how often
these errors occur. In Chapter 5, we give a formal introduction to the problem of model selection.
We spend the next two chapters building a foundation of probability and theory necessary to make
that discussion rigorous.

28This reasoning does not generally extend to anecdotal observations. Each of us observes incredibly rare events
every day, events we could not possibly hope to predict. However, in the non-rigorous setting of anecdotal evidence,
almost anything may appear to be a rare event, so the idea of looking for rare events in day-to-day activities is
treacherous. For example, we might look at the lottery: there was only a 1 in 292 million chance that the Powerball
numbers for the largest jackpot in history (January 13th, 2016) would be (04, 08, 19, 27, 34) with a Powerball of
(10), but nonetheless those numbers came up! However, no matter what numbers had turned up, they would have
had the same incredibly rare odds. That is, any set of numbers we could have observed would ultimately be incredibly
rare. This type of situation is typical of our daily lives: each possible event in itself seems incredibly rare, but if we
consider every alternative, those outcomes are also incredibly rare. We should be cautious not to misinterpret such
anecdotal evidence.
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