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3.1. DEFINING PROBABILITY

3.1 Defining probability

Statistics is based on probability, and while probability is not required for the applied techniques
in this book, it may help you gain a deeper understanding of the methods and set a better foundation
for future courses.

3.1.1 Introductory examples

Before we get into technical ideas, let’s walk through some basic examples that may feel more
familiar.

EXAMPLE 3.1

A “die”, the singular of dice, is a cube with six faces numbered 1, 2, 3, 4, 5, and 6. What is the
chance of getting 1 when rolling a die?

If the die is fair, then the chance of a 1 is as good as the chance of any other number. Since there
are six outcomes, the chance must be 1-in-6 or, equivalently, 1/6.

EXAMPLE 3.2
What is the chance of getting a 1 or 2 in the next roll?

1 and 2 constitute two of the six equally likely possible outcomes, so the chance of getting one of
these two outcomes must be 2/6 = 1/3.

EXAMPLE 3.3
What is the chance of getting either 1, 2, 3, 4, 5, or 6 on the next roll?

100%. The outcome must be one of these numbers.

EXAMPLE 3.4
What is the chance of not rolling a 27

Since the chance of rolling a 2 is 1/6 or 16.6%, the chance of not rolling a 2 must be 100% — 16.6% =
83.3% or 5/6.

Alternatively, we could have noticed that not rolling a 2 is the same as getting a 1, 3, 4, 5, or 6,
which makes up five of the six equally likely outcomes and has probability 5/6.

EXAMPLE 3.5

Consider rolling two dice. If 1/6 of the time the first die is a 1 and 1/6 of those times the second
die is a 1, what is the chance of getting two 1s?

If 16.6% of the time the first die is a 1 and 1/6 of those times the second die is also a 1, then the
chance that both dice are 1 is (1/6) x (1/6) or 1/36.
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82 CHAPTER 3. PROBABILITY

3.1.2 Probability

We use probability to build tools to describe and understand apparent randomness. We often
frame probability in terms of a random process giving rise to an outcome.

Rolladie — 1,2,3,4,5 0r6
Flipacoin — HorT

Rolling a die or flipping a coin is a seemingly random process and each gives rise to an outcome.

PROBABILITY

The probability of an outcome is the proportion of times the outcome would occur if we
observed the random process an infinite number of times.

Probability is defined as a proportion, and it always takes values between 0 and 1 (inclusively).
It may also be displayed as a percentage between 0% and 100%.

Probability can be illustrated by rolling a die many times. Let p,, be the proportion of outcomes
that are 1 after the first n rolls. As the number of rolls increases, p,, will converge to the probability
of rolling a 1, p = 1/6. Figure 3.1 shows this convergence for 100,000 die rolls. The tendency of p,,
to stabilize around p is described by the Law of Large Numbers.

T T T 1
1 10 100 1,000 10,000 100,000

n (number of rolls)

Figure 3.1: The fraction of die rolls that are 1 at each stage in a simulation. The
proportion tends to get closer to the probability 1/6 ~ 0.167 as the number of rolls
increases.

LAW OF LARGE NUMBERS

As more observations are collected, the proportion p,, of occurrences with a particular outcome
converges to the probability p of that outcome.

Occasionally the proportion will veer off from the probability and appear to defy the Law of
Large Numbers, as p,, does many times in Figure 3.1. However, these deviations become smaller as
the number of rolls increases.

Above we write p as the probability of rolling a 1. We can also write this probability as

P(rolling a 1)

As we become more comfortable with this notation, we will abbreviate it further. For instance, if it
is clear that the process is “rolling a die”, we could abbreviate P(rolling a 1) as P(1).
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GUIDED PRACTICE 3.6

Random processes include rolling a die and flipping a coin. (a) Think of another random process.
(b) Describe all the possible outcomes of that process. For instance, rolling a die is a random process
with possible outcomes 1, 2, ..., 6.

What we think of as random processes are not necessarily random, but they may just be too
difficult to understand exactly. The fourth example in the footnote solution to Guided Practice 3.6
suggests a roommate’s behavior is a random process. However, even if a roommate’s behavior is not
truly random, modeling her behavior as a random process can still be useful.

3.1.3 Disjoint or mutually exclusive outcomes

Two outcomes are called disjoint or mutually exclusive if they cannot both happen. For
instance, if we roll a die, the outcomes 1 and 2 are disjoint since they cannot both occur. On the other
hand, the outcomes 1 and “rolling an odd number” are not disjoint since both occur if the outcome
of the roll is a 1. The terms disjoint and mutually exclusive are equivalent and interchangeable.

Calculating the probability of disjoint outcomes is easy. When rolling a die, the outcomes 1
and 2 are disjoint, and we compute the probability that one of these outcomes will occur by adding
their separate probabilities:

P(lor2)=P1)+P(2)=1/6+1/6=1/3

What about the probability of rolling a 1, 2, 3, 4, 5, or 67 Here again, all of the outcomes are
disjoint so we add the probabilities:

P(lor2or3or4orb5or6)
= P(1) + P(2) + P(3) + P(4) + P(5) + P(6)
=1/6+1/6+1/6+1/6+1/6+1/6=1

The Addition Rule guarantees the accuracy of this approach when the outcomes are disjoint.

ADDITION RULE OF DISJOINT OUTCOMES

If A; and A, represent two disjoint outcomes, then the probability that one of them occurs is
given by

P(Al or AQ) = P(Al) +P(A2)

If there are many disjoint outcomes Aj, ..., Ay, then the probability that one of these outcomes
will occur is

P(A1)+P(A2)+"'+P(Ak)

I Here are four examples. (i) Whether someone gets sick in the next month or not is an apparently random process
with outcomes sick and not. (ii) We can generate a random process by randomly picking a person and measuring
that person’s height. The outcome of this process will be a positive number. (iii) Whether the stock market goes up
or down next week is a seemingly random process with possible outcomes up, down, and no_change. Alternatively, we
could have used the percent change in the stock market as a numerical outcome. (iv) Whether your roommate cleans
her dishes tonight probably seems like a random process with possible outcomes cleans_dishes and leaves_dishes.
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GUIDED PRACTICE 3.7

We are interested in the probability of rolling a 1, 4, or 5. (a) Explain why the outcomes 1, 4, and
5 are disjoint. (b) Apply the Addition Rule for disjoint outcomes to determine P(1 or 4 or 5).”

GUIDED PRACTICE 3.8

In the loans data set in Chapter 2, the homeownership variable described whether the borrower
rents, has a mortgage, or owns her property. Of the 10,000 borrowers, 3858 rented, 4789 had a
mortgage, and 1353 owned their home.”

(a) Are the outcomes rent, mortgage, and own disjoint?

(b) Determine the proportion of loans with value mortgage and own separately.

(c) Use the Addition Rule for disjoint outcomes to compute the probability a randomly selected
loan from the data set is for someone who has a mortgage or owns her home.

Data scientists rarely work with individual outcomes and instead consider sets or collections
of outcomes. Let A represent the event where a die roll results in 1 or 2 and B represent the event
that the die roll is a 4 or a 6. We write A as the set of outcomes {1, 2} and B = {4, 6}. These
sets are commonly called events. Because A and B have no elements in common, they are disjoint
events. A and B are represented in Figure 3.2.

Figure 3.2: Three events, A, B, and D, consist of outcomes from rolling a die. A
and B are disjoint since they do not have any outcomes in common.

The Addition Rule applies to both disjoint outcomes and disjoint events. The probability that
one of the disjoint events A or B occurs is the sum of the separate probabilities:

P(Aor B)=P(A)+P(B)=1/34+1/3=2/3

GUIDED PRACTICE 3.9

(a) Verify the probability of event A, P(A), is 1/3 using the Addition Rule. (b) Do the same for
event B."

GUIDED PRACTICE 3.10

(a) Using Figure 3.2 as a reference, what outcomes are represented by event D? (b) Are events B
and D disjoint? (c) Are events A and D disjoint?”

GUIDED PRACTICE 3.11

In Guided Practice 3.10, you confirmed B and D from Figure 3.2 are disjoint. Compute the proba-
bility that event B or event D occurs.”

2(a) The random process is a die roll, and at most one of these outcomes can come up. This means they are
disjoint outcomes. (b) P(1or4or5) =P(1)+P(4)+ P(5)=¢t + s+t =2=1

3(a) Yes. Each loan is categorized in only one level of homeownership. (b) Mortgage: 140708090 = 0.479. Own:
110305030 =0.135. (c) P(mortgage or own) = P(mortgage) + P(own) = 0.479 + 0.135 = 0.614.

*a) P(A)=P(1or2)=P(1)+ P(2) =+ + ¢ = 2 = 1. (b) Similarly, P(B) = 1/3.

5(a) Outcomes 2 and 3. (b) Yes, events B and D are disjoint because they share no outcomes. (c) The events A

and D share an outcome in common, 2, and so are not disjoint.

6Since B and D are disjoint events, use the Addition Rule: P(B or D) = P(B) + P(D) = % + % =2
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3.1.4 Probabilities when events are not disjoint

Let’s consider calculations for two events that are not disjoint in the context of a regular deck
of 52 cards, represented in Figure 3.3. If you are unfamiliar with the cards in a regular deck, please
see the footnote.”

2% 3% 4% 5% 6% 7h 8% O&% 10& Jh Qb K& Ad
20 30 40 5O 80 7O 8% 90 100 IO Q0 KO A
20 30 40 50 60 70 80 90 100 JO Q0 KO AQO
26 36 46 S GA TA 8A OA 104 JA QA KA AN

Figure 3.3: Representations of the 52 unique cards in a deck.

GUIDED PRACTICE 3.12

(a) What is the probability that a randomly selected card is a diamond? (b) What is the probability
that a randomly selected card is a face card?®

Venn diagrams are useful when outcomes can be categorized as “in” or “out” for two or three
variables, attributes, or random processes. The Venn diagram in Figure 3.4 uses a circle to represent
diamonds and another to represent face cards. If a card is both a diamond and a face card, it falls
into the intersection of the circles. If it is a diamond but not a face card, it will be in part of the
left circle that is not in the right circle (and so on). The total number of cards that are diamonds is
given by the total number of cards in the diamonds circle: 10 + 3 = 13. The probabilities are also
shown (e.g. 10/52 = 0.1923).

Diamonds, 0.2500
A

There are also
30 cards that are
neither diamonds

nor face cards

~
Face cards, 0.2308

Figure 3.4: A Venn diagram for diamonds and face cards.

Let A represent the event that a randomly selected card is a diamond and B represent the
event that it is a face card. How do we compute P(A or B)? Events A and B are not disjoint — the
cards J<{, ¢, and K¢ fall into both categories — so we cannot use the Addition Rule for disjoint
events. Instead we use the Venn diagram. We start by adding the probabilities of the two events:

P(A) + P(B) = P(¢) + P(face card) = 13/52 + 12/52

"The 52 cards are split into four suits: & (club), ¢ (diamond), © (heart), # (spade). Each suit has its 13 cards
labeled: 2, 3, ..., 10, J (jack), Q (queen), K (king), and A (ace). Thus, each card is a unique combination of a suit and
a label, e.g. 40 and J&. The 12 cards represented by the jacks, queens, and kings are called face cards. The cards
that are ¢ or © are typically colored red while the other two suits are typically colored black.

8(a) There are 52 cards and 13 diamonds. If the cards are thoroughly shuffled, each card has an equal chance
of being drawn, so the probability that a randomly selected card is a diamond is P({) = 12 = 0.250. (b) Likewise,

52
there are 12 face cards, so P(face card) = L})% = % =0.231.
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However, the three cards that are in both events were counted twice, once in each probability. We
must correct this double counting:

P(A or B) = P({ or face card)
= P({) + P(face card) — P({ and face card)
— 13/52 + 12/52 — 3/52
=22/52 =11/26

This equation is an example of the General Addition Rule.

GENERAL ADDITION RULE

If A and B are any two events, disjoint or not, then the probability that at least one of them
will occur is

P(A or B) = P(A) + P(B) — P(A and B)

where P(A and B) is the probability that both events occur.

TIP: “or” is inclusive
When we write “or” in statistics, we mean “and/or” unless we explicitly state otherwise.
Thus, A or B occurs means A, B, or both A and B occur.

GUIDED PRACTICE 3.13

(a) If A and B are disjoint, describe why this implies P(A and B) = 0. (b) Using part (a), verify
that the General Addition Rule simplifies to the simpler Addition Rule for disjoint events if A and
B are disjoint.”

GUIDED PRACTICE 3.14

In the loans data set describing 10,000 loans, 1495 loans were from joint applications (e.g. a couple
applied together), 4789 applicants had a mortgage, and 950 had both of these characteristics. Create
a Venn diagram for this setup.'’

GUIDED PRACTICE 3.15

(a) Use your Venn diagram from Guided Practice 3.14 to determine the probability a randomly
drawn loan from the loans data set is from a joint application where the couple had a mortgage.
(b) What is the probability that the loan had either of these attributes?"!

9(a) If A and B are disjoint, A and B can never occur simultaneously. (b) If A and B are disjoint, then the last
P(A and B) term of in the General Addition Rule formula is 0 (see part (a)) and we are left with the Addition Rule
for disjoint events.

19Both the counts and corresponding probabilities (e.g. 3839/10000 = 0.384) applicant had a mortgage joint application
are shown. Notice that the number of loans represented in the left circle 3839
corresponds to 3839 + 950 = 4789, and the number represented in the right 0.384
circle is 950 4 545 = 1495. Other loans: 10000 — 3839 - 950 - 545 = 4666 (0.457)

11 (a) The solution is represented by the intersection of the two circles: 0.095. (b) This is the sum of the three
disjoint probabilities shown in the circles: 0.384 4+ 0.095 + 0.055 = 0.534 (off by 0.001 due to a rounding error).
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3.1.5 Probability distributions

A probability distribution is a table of all disjoint outcomes and their associated probabili-
ties. Figure 3.5 shows the probability distribution for the sum of two dice.

Dice sum 2 3 4 5 6 7 8 9 10 11 12
Probability + 2 2 4 2 & 5 4 3 2 L

Figure 3.5: Probability distribution for the sum of two dice.

RULES FOR PROBABILITY DISTRIBUTIONS

A probability distribution is a list of the possible outcomes with corresponding probabilities
that satisfies three rules:

1. The outcomes listed must be disjoint.
2. Each probability must be between 0 and 1.
3. The probabilities must total 1.

GUIDED PRACTICE 3.16

Figure 3.6 suggests three distributions for household income in the United States. Only one is
correct. Which one must it be? What is wrong with the other two?'”

Income Range | $0-25k  $25k-50k  $50k-100k  $100k+
(a) 0.18 0.39 0.33 0.16
b) | 038  -0.27 0.52 0.37
(¢ | 0.28 0.27 0.29 0.16

Figure 3.6: Proposed distributions of US household incomes (Guided Prac-
tice 3.16).

Chapter 1 emphasized the importance of plotting data to provide quick summaries. Probability
distributions can also be summarized in a bar plot. For instance, the distribution of US household

incomes is shown in Figure 3.7 as a bar plot. The probability distribution for the sum of two dice is
shown in Figure 3.5 and plotted in Figure 3.8.

Probability

$0-25k $25k-50k  $50k-100k  $100k+

US Household Incomes

Figure 3.7: The probability distribution of US household income.

12The probabilities of (a) do not sum to 1. The second probability in (b) is negative. This leaves (c), which sure

enough satisfies the requirements of a distribution. One of the three was said to be the actual distribution of US
household incomes, so it must be (c).
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0.15 -

0.10

Probability

0.05

0.00 -

T T 1
2 3 4 5 6 7 8 9 10 11 12
Dice Sum

Figure 3.8: The probability distribution of the sum of two dice.

In these bar plots, the bar heights represent the probabilities of outcomes. If the outcomes
are numerical and discrete, it is usually (visually) convenient to make a bar plot that resembles a
histogram, as in the case of the sum of two dice. Another example of plotting the bars at their
respective locations is shown in Figure 3.18 on page 115.

3.1.6 Complement of an event

Rolling a die produces a value in the set {1, 2, 3, 4, 5, 6}. This set of all possible outcomes
is called the sample space (S) for rolling a die. We often use the sample space to examine the
scenario where an event does not occur.

Let D = {2, 3} represent the event that the outcome of a die roll is 2 or 3. Then the com-
plement of D represents all outcomes in our sample space that are not in D, which is denoted
by D¢ = {1, 4, 5, 6}. That is, D¢ is the set of all possible outcomes not already included in D.
Figure 3.9 shows the relationship between D, D¢, and the sample space S.

Figure 3.9: Event D = {2, 3} and its complement, D¢ = {1, 4, 5, 6}. S represents
the sample space, which is the set of all possible outcomes.

GUIDED PRACTICE 3.17
(a) Compute P(D¢) = P(rolling a 1, 4, 5, or 6). (b) What is P(D) + P(D¢)?"*

GUIDED PRACTICE 3.18

Events A = {1, 2} and B = {4, 6} are shown in Figure 3.2 on page 84. (a) Write out what A° and
B¢ represent. (b) Compute P(A¢) and P(B¢). (c¢) Compute P(A) + P(A¢) and P(B) + P(B¢).""

13(a) The outcomes are disjoint and each has probability 1/6, so the total probability is 4/6 = 2/3. (b) We can
also see that P(D) = % —+ % =1/3. Since D and D¢ are disjoint, P(D) + P(D¢) = 1.

14Brief solutions: (a) A¢ = {3, 4, 5, 6} and B® = {1, 2, 3, 5}. (b) Noting that each outcome is disjoint, add the
individual outcome probabilities to get P(A¢) = 2/3 and P(B¢) = 2/3. (c¢) A and A€ are disjoint, and the same is
true of B and B¢. Therefore, P(A) + P(A¢) =1 and P(B) + P(B¢) = 1.
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A complement of an event A is constructed to have two very important properties: (i) every
possible outcome not in A is in A¢, and (ii) A and A° are disjoint. Property (i) implies
P(Aor A%) =1

That is, if the outcome is not in A, it must be represented in A°. We use the Addition Rule for
disjoint events to apply Property (ii):

P(A or A%) = P(A) + P(A°)

Combining the last two equations yields a very useful relationship between the probability of an
event and its complement.

COMPLEMENT

The complement of event A is denoted A€, and A€ represents all outcomes not in A. A and A°
are mathematically related:

P(A)+ P(A° =1, ie. P(A)=1-P(A°)

In simple examples, computing A or A€ is feasible in a few steps. However, using the complement
can save a lot of time as problems grow in complexity.

GUIDED PRACTICE 3.19

Let A represent the event where we roll two dice and their total is less than 12. (a) What does the
event A¢ represent? (b) Determine P(A¢) from Figure 3.5 on page 87. (c) Determine P(A)."”

GUIDED PRACTICE 3.20
Find the following probabilities for rolling two dice:'®

(a) The sum of the dice is not 6.

(b) The sum is at least 4. That is, determine the probability of the event B = {4, 5, ..., 12}.
(¢) The sum is no more than 10. That is, determine the probability of the event D = {2, 3, ..., 10}.

3.1.7 Independence

Just as variables and observations can be independent, random processes can be independent,
too. Two processes are independent if knowing the outcome of one provides no useful information
about the outcome of the other. For instance, flipping a coin and rolling a die are two independent
processes — knowing the coin was heads does not help determine the outcome of a die roll. On the
other hand, stock prices usually move up or down together, so they are not independent.

Example 3.5 provides a basic example of two independent processes: rolling two dice. We want
to determine the probability that both will be 1. Suppose one of the dice is red and the other white.
If the outcome of the red die is a 1, it provides no information about the outcome of the white die. We
first encountered this same question in Example 3.5 (page 81), where we calculated the probability
using the following reasoning: 1/6 of the time the red die is a 1, and 1/6 of those times the white die

15(a) The complement of A: when the total is equal to 12. (b) P(A°) = 1/36. (c) Use the probability of the
complement from part (b), P(A°) = 1/36, and the equation for the complement: P(less than 12) = 1 — P(12) =
1—1/36 = 35/36.

16(a) First find P(6) = 5/36, then use the complement: P(not 6) = 1 — P(6) = 31/36.

(b) First find the complement, which requires much less effort: P(2 or 3) = 1/36 4+ 2/36 = 1/12. Then calculate
P(B)=1-P(B°) =1-1/12=11/12.

(¢) As before, finding the complement is the clever way to determine P(D). First find P(D¢) = P(11 or 12) =
2/36 4+ 1/36 = 1/12. Then calculate P(D) =1 — P(D¢) = 11/12.
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will also be 1. This is illustrated in Figure 3.10. Because the rolls are independent, the probabilities
of the corresponding outcomes can be multiplied to get the final answer: (1/6) x (1/6) = 1/36. This
can be generalized to many independent processes.

All rolls

| | 1/6th of the first
: ' rolls are a 1.

1/6th of those times where

- the first roll is a 1 the
second roll is also a 1.

Figure 3.10: 1/6 of the time, the first roll is a 1. Then 1/6 of those times, the
second roll will also be a 1.

EXAMPLE 3.21

What if there was also a blue die independent of the other two? What is the probability of rolling
the three dice and getting all 1s?

The same logic applies from Example 3.5. If 1/36 of the time the white and red dice are both 1,
then 1/6 of those times the blue die will also be 1, so multiply:

P(white = 1 and red = 1 and blue = 1) = P(white = 1) X P(red = 1) x P(blue = 1)
=(1/6) x (1/6) x (1/6) = 1/216

Example 3.21 illustrates what is called the Multiplication Rule for independent processes.

MULTIPLICATION RULE FOR INDEPENDENT PROCESSES

If A and B represent events from two different and independent processes, then the probability
that both A and B occur can be calculated as the product of their separate probabilities:

P(A and B) = P(A) x P(B)

Similarly, if there are k events Ay, ..., Ay from k independent processes, then the probability
they all occur is

P(A;) X P(A3) x -+ x P(Ag)

GUIDED PRACTICE 3.22

About 9% of people are left-handed. Suppose 2 people are selected at random from the U.S. pop-
ulation. Because the sample size of 2 is very small relative to the population, it is reasonable to
assume these two people are independent. (a) What is the probability that both are left-handed?
(b) What is the probability that both are right-handed?'”

17(a) The probability the first person is left-handed is 0.09, which is the same for the second person. We apply the
Multiplication Rule for independent processes to determine the probability that both will be left-handed: 0.09x0.09 =
0.0081.

(b) It is reasonable to assume the proportion of people who are ambidextrous (both right- and left-handed) is nearly
0, which results in P(right-handed) = 1 — 0.09 = 0.91. Using the same reasoning as in part (a), the probability that
both will be right-handed is 0.91 x 0.91 = 0.8281.
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GUIDED PRACTICE 3.23
Suppose 5 people are selected at random.'®
(a) What is the probability that all are right-handed?
(b) What is the probability that all are left-handed?
(c) What is the probability that not all of the people are right-handed?

Suppose the variables handedness and sex are independent, i.e. knowing someone’s sex pro-
vides no useful information about their handedness and vice-versa. Then we can compute whether
a randomly selected person is right-handed and female'? using the Multiplication Rule:

P(right-handed and female) = P(right-handed) x P(female)
=0.91 x 0.50 = 0.455

GUIDED PRACTICE 3.24
Three people are selected at random.?"

(a) What is the probability that the first person is male and right-handed?

(b) What is the probability that the first two people are male and right-handed?.
(c) What is the probability that the third person is female and left-handed?
)

(d) What is the probability that the first two people are male and right-handed and the third
person is female and left-handed?

Sometimes we wonder if one outcome provides useful information about another outcome. The
question we are asking is, are the occurrences of the two events independent? We say that two
events A and B are independent if they satisfy P(A and B) = P(A) x P(B).

EXAMPLE 3.25

If we shuffle up a deck of cards and draw one, is the event that the card is a heart independent of
the event that the card is an ace?

The probability the card is a heart is 1/4 and the probability that it is an ace is 1/13. The probability
the card is the ace of hearts is 1/52. We check whether P(A and B) = P(A) x P(B) is satisfied:

1 1 1
(V) x P(ace) 1538 (V and ace)
Because the equation holds, the event that the card is a heart and the event that the card is an ace

are independent events.

18(a) The abbreviations RH and LH are used for right-handed and left-handed, respectively. Since each are indepen-
dent, we apply the Multiplication Rule for independent processes:
P(all five are RH) = P(first = RH, second = RH, ..., fifth = RH)
= P(first = RH) X P(second = RH) x - -- x P(fifth = RH)
=0.91 x 0.91 x 0.91 x 0.91 x 0.91 = 0.624

(b) Using the same reasoning as in (a), 0.09 x 0.09 x 0.09 x 0.09 x 0.09 = 0.0000059
(c) Use the complement, P(all five are RH), to answer this question:

P(not all RH) = 1 — P(all RH) = 1 — 0.624 = 0.376

19The actual proportion of the U.S. population that is female is about 50%, and so we use 0.5 for the probability
of sampling a woman. However, this probability does differ in other countries.

20Brief answers are provided. (a) This can be written in probability notation as P(a randomly selected person is
male and right-handed) = 0.455. (b) 0.207. (c) 0.045. (d) 0.0093.
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