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Statistical inference is primarily concerned with understanding and

quantifying the uncertainty of parameter estimates. While the equa-

tions and details change depending on the setting, the foundations for

inference are the same throughout all of statistics.

We start with a familiar topic: the idea of using a sample proportion

to estimate a population proportion. Next, we create what’s called a

confidence interval, which is a range of plausible values where we may

find the true population value. Finally, we introduce the hypothesis

testing framework, which allows us to formally evaluate claims about

the population, such as whether a survey provides strong evidence that

a candidate has the support of a majority of the voting population.

For videos, slides, and other resources, please visit

www.openintro.org/os

http://www.openintro.org/redirect.php?go=stat&referrer=os4_pdf
http://www.openintro.org/redirect.php?go=os&referrer=os4_pdf
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5.1 Point estimates and sampling variability

Companies such as Pew Research frequently conduct polls as a way to understand the state
of public opinion or knowledge on many topics, including politics, scientific understanding, brand
recognition, and more. The ultimate goal in taking a poll is generally to use the responses to estimate
the opinion or knowledge of the broader population.

5.1.1 Point estimates and error

Suppose a poll suggested the US President’s approval rating is 45%. We would consider 45% to
be a point estimate of the approval rating we might see if we collected responses from the entire
population. This entire-population response proportion is generally referred to as the parameter
of interest. When the parameter is a proportion, it is often denoted by p, and we often refer to the
sample proportion as p̂ (pronounced p-hat1). Unless we collect responses from every individual in
the population, p remains unknown, and we use p̂ as our estimate of p. The difference we observe
from the poll versus the parameter is called the error in the estimate. Generally, the error consists
of two aspects: sampling error and bias.

Sampling error, sometimes called sampling uncertainty, describes how much an estimate will
tend to vary from one sample to the next. For instance, the estimate from one sample might be 1%
too low while in another it may be 3% too high. Much of statistics, including much of this book,
is focused on understanding and quantifying sampling error, and we will find it useful to consider a
sample’s size to help us quantify this error; the sample size is often represented by the letter n.

Bias describes a systematic tendency to over- or under-estimate the true population value.
For example, if we were taking a student poll asking about support for a new college stadium, we’d
probably get a biased estimate of the stadium’s level of student support by wording the question as,
Do you support your school by supporting funding for the new stadium? We try to minimize bias
through thoughtful data collection procedures, which were discussed in Chapter 1 and are the topic
of many other books.

5.1.2 Understanding the variability of a point estimate

Suppose the proportion of American adults who support the expansion of solar energy is p =
0.88, which is our parameter of interest.2 If we were to take a poll of 1000 American adults on this
topic, the estimate would not be perfect, but how close might we expect the sample proportion in
the poll would be to 88%? We want to understand, how does the sample proportion p̂ behave when
the true population proportion is 0.88.3 Let’s find out! We can simulate responses we would get
from a simple random sample of 1000 American adults, which is only possible because we know the
actual support for expanding solar energy is 0.88. Here’s how we might go about constructing such
a simulation:

1. There were about 250 million American adults in 2018. On 250 million pieces of paper, write
“support” on 88% of them and “not” on the other 12%.

2. Mix up the pieces of paper and pull out 1000 pieces to represent our sample of 1000 American
adults.

3. Compute the fraction of the sample that say “support”.

Any volunteers to conduct this simulation? Probably not. Running this simulation with 250 million
pieces of paper would be time-consuming and very costly, but we can simulate it using computer

1Not to be confused with phat, the slang term used for something cool, like this book.
2We haven’t actually conducted a census to measure this value perfectly. However, a very large sample has

suggested the actual level of support is about 88%.
388% written as a proportion would be 0.88. It is common to switch between proportion and percent. However,

formulas presented in this book always refer to the proportion, not the percent.
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code; we’ve written a short program in Figure 5.1 in case you are curious what the computer code
looks like. In this simulation, the sample gave a point estimate of p̂1 = 0.894. We know the
population proportion for the simulation was p = 0.88, so we know the estimate had an error of
0.894− 0.88 = +0.014.

# 1. Create a set of 250 million entries, where 88% of them are "support"

# and 12% are "not".

pop size <- 250000000

possible entries <- c(rep("support", 0.88 * pop size), rep("not", 0.12 * pop size))

# 2. Sample 1000 entries without replacement.

sampled entries <- sample(possible entries, size = 1000)

# 3. Compute p-hat: count the number that are "support", then divide by

# the sample size.

sum(sampled entries == "support") / 1000

Figure 5.1: For those curious, this is code for a single p̂ simulation using the statis-
tical software called R. Each line that starts with # is a code comment, which is
used to describe in regular language what the code is doing. We’ve provided soft-
ware labs in R at openintro.org/stat/labs for anyone interested in learning more.

One simulation isn’t enough to get a great sense of the distribution of estimates we might expect
in the simulation, so we should run more simulations. In a second simulation, we get p̂2 = 0.885,
which has an error of +0.005. In another, p̂3 = 0.878 for an error of -0.002. And in another, an
estimate of p̂4 = 0.859 with an error of -0.021. With the help of a computer, we’ve run the simulation
10,000 times and created a histogram of the results from all 10,000 simulations in Figure 5.2. This
distribution of sample proportions is called a sampling distribution. We can characterize this
sampling distribution as follows:

Center. The center of the distribution is x̄p̂ = 0.880, which is the same as the parameter. Notice
that the simulation mimicked a simple random sample of the population, which is a straight-
forward sampling strategy that helps avoid sampling bias.

Spread. The standard deviation of the distribution is sp̂ = 0.010. When we’re talking about a
sampling distribution or the variability of a point estimate, we typically use the term standard
error rather than standard deviation, and the notation SEp̂ is used for the standard error
associated with the sample proportion.

Shape. The distribution is symmetric and bell-shaped, and it resembles a normal distribution.

These findings are encouraging! When the population proportion is p = 0.88 and the sample size is
n = 1000, the sample proportion p̂ tends to give a pretty good estimate of the population proportion.
We also have the interesting observation that the histogram resembles a normal distribution.

SAMPLING DISTRIBUTIONS ARE NEVER OBSERVED, BUT WE KEEP THEM IN MIND

In real-world applications, we never actually observe the sampling distribution, yet it is useful to
always think of a point estimate as coming from such a hypothetical distribution. Understanding
the sampling distribution will help us characterize and make sense of the point estimates that
we do observe.

EXAMPLE 5.1

If we used a much smaller sample size of n = 50, would you guess that the standard error for p̂
would be larger or smaller than when we used n = 1000?

Intuitively, it seems like more data is better than less data, and generally that is correct! The typical
error when p = 0.88 and n = 50 would be larger than the error we would expect when n = 1000.

Example 5.1 highlights an important property we will see again and again: a bigger sample
tends to provide a more precise point estimate than a smaller sample.

http://www.openintro.org/redirect.php?go=openintroorg_labs&referrer=os4_pdf
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Sample Proportions
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Figure 5.2: A histogram of 10,000 sample proportions, where each sample is taken
from a population where the population proportion is 0.88 and the sample size is
n = 1000.

5.1.3 Central Limit Theorem

The distribution in Figure 5.2 looks an awful lot like a normal distribution. That is no anomaly;
it is the result of a general principle called the Central Limit Theorem.

CENTRAL LIMIT THEOREM AND THE SUCCESS-FAILURE CONDITION

When observations are independent and the sample size is sufficiently large, the sample propor-
tion p̂ will tend to follow a normal distribution with the following mean and standard error:

µp̂ = p SEp̂ =

√
p(1− p)

n

In order for the Central Limit Theorem to hold, the sample size is typically considered sufficiently
large when np ≥ 10 and n(1− p) ≥ 10, which is called the success-failure condition.

The Central Limit Theorem is incredibly important, and it provides a foundation for much
of statistics. As we begin applying the Central Limit Theorem, be mindful of the two technical
conditions: the observations must be independent, and the sample size must be sufficiently large
such that np ≥ 10 and n(1− p) ≥ 10.

EXAMPLE 5.2

Earlier we estimated the mean and standard error of p̂ using simulated data when p = 0.88 and
n = 1000. Confirm that the Central Limit Theorem applies and the sampling distribution is ap-
proximately normal.

Independence. There are n = 1000 observations for each sample proportion p̂, and each of those
observations are independent draws. The most common way for observations to be considered
independent is if they are from a simple random sample.

Success-failure condition. We can confirm the sample size is sufficiently large by checking the
success-failure condition and confirming the two calculated values are greater than 10:

np = 1000× 0.88 = 880 ≥ 10 n(1− p) = 1000× (1− 0.88) = 120 ≥ 10

The independence and success-failure conditions are both satisfied, so the Central Limit Theorem
applies, and it’s reasonable to model p̂ using a normal distribution.
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HOW TO VERIFY SAMPLE OBSERVATIONS ARE INDEPENDENT

Subjects in an experiment are considered independent if they undergo random assignment to
the treatment groups.

If the observations are from a simple random sample, then they are independent.

If a sample is from a seemingly random process, e.g. an occasional error on an assembly line,
checking independence is more difficult. In this case, use your best judgement.

An additional condition that is sometimes added for samples from a population is that they
are no larger than 10% of the population. When the sample exceeds 10% of the population size, the
methods we discuss tend to overestimate the sampling error slightly versus what we would get using
more advanced methods.4 This is very rarely an issue, and when it is an issue, our methods tend to
be conservative, so we consider this additional check as optional.

EXAMPLE 5.3

Compute the theoretical mean and standard error of p̂ when p = 0.88 and n = 1000, according to
the Central Limit Theorem.

The mean of the p̂’s is simply the population proportion: µp̂ = 0.88.

The calculation of the standard error of p̂ uses the following formula:

SEp̂ =

√
p(1− p)

n
=

√
0.88(1− 0.88)

1000
= 0.010

EXAMPLE 5.4

Estimate how frequently the sample proportion p̂ should be within 0.02 (2%) of the population
value, p = 0.88. Based on Examples 5.2 and 5.3, we know that the distribution is approximately
N(µp̂ = 0.88, SEp̂ = 0.010).

After so much practice in Section 4.1, this normal distribution example will hopefully feel familiar!
We would like to understand the fraction of p̂’s between 0.86 and 0.90:

0.86 0.88 0.90

With µp̂ = 0.88 and SEp̂ = 0.010, we can compute the Z-score for both the left and right cutoffs:

Z0.86 =
0.86− 0.88

0.010
= −2 Z0.90 =

0.90− 0.88

0.010
= 2

We can use either statistical software, a graphing calculator, or a table to find the areas to the tails,
and in any case we will find that they are each 0.0228. The total tail areas are 2× 0.0228 = 0.0456,
which leaves the shaded area of 0.9544. That is, about 95.44% of the sampling distribution in
Figure 5.2 is within ±0.02 of the population proportion, p = 0.88.

4For example, we could use what’s called the finite population correction factor: if the sample is of size n

and the population size is N , then we can multiple the typical standard error formula by
√
N−n
N−1

to obtain a smaller,

more precise estimate of the actual standard error. When n < 0.1×N , this correction factor is relatively small.
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GUIDED PRACTICE 5.5

In Example 5.1 we discussed how a smaller sample would tend to produce a less reliable estimate.

Explain how this intuition is reflected in the formula for SEp̂ =
√

p(1−p)
n .5

5.1.4 Applying the Central Limit Theorem to a real-world setting

We do not actually know the population proportion unless we conduct an expensive poll of all
individuals in the population. Our earlier value of p = 0.88 was based on a Pew Research conducted
a poll of 1000 American adults that found p̂ = 0.887 of them favored expanding solar energy. The
researchers might have wondered: does the sample proportion from the poll approximately follow a
normal distribution? We can check the conditions from the Central Limit Theorem:

Independence. The poll is a simple random sample of American adults, which means that the
observations are independent.

Success-failure condition. To check this condition, we need the population proportion, p, to
check if both np and n(1− p) are greater than 10. However, we do not actually know p, which
is exactly why the pollsters would take a sample! In cases like these, we often use p̂ as our
next best way to check the success-failure condition:

np̂ = 1000× 0.887 = 887 n(1− p̂) = 1000× (1− 0.887) = 113

The sample proportion p̂ acts as a reasonable substitute for p during this check, and each value
in this case is well above the minimum of 10.

This substitution approximation of using p̂ in place of p is also useful when computing the
standard error of the sample proportion:

SEp̂ =

√
p(1− p)

n
≈
√
p̂(1− p̂)

n
=

√
0.887(1− 0.887)

1000
= 0.010

This substitution technique is sometimes referred to as the “plug-in principle”. In this case, SEp̂
didn’t change enough to be detected using only 3 decimal places versus when we completed the
calculation with 0.88 earlier. The computed standard error tends to be reasonably stable even when
observing slightly different proportions in one sample or another.

5Since the sample size n is in the denominator (on the bottom) of the fraction, a bigger sample size means the
entire expression when calculated will tend to be smaller. That is, a larger sample size would correspond to a smaller
standard error.
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5.1.5 More details regarding the Central Limit Theorem

We’ve applied the Central Limit Theorem in numerous examples so far this chapter:

When observations are independent and the sample size is sufficiently large, the distri-
bution of p̂ resembles a normal distribution with

µp̂ = p SEp̂ =

√
p(1− p)

n

The sample size is considered sufficiently large when np ≥ 10 and n(1− p) ≥ 10.

In this section, we’ll explore the success-failure condition and seek to better understand the Central
Limit Theorem.

An interesting question to answer is, what happens when np < 10 or n(1− p) < 10? As we did
in Section 5.1.2, we can simulate drawing samples of different sizes where, say, the true proportion
is p = 0.25. Here’s a sample of size 10:

no, no, yes, yes, no, no, no, no, no, no

In this sample, we observe a sample proportion of yeses of p̂ = 2
10 = 0.2. We can simulate many such

proportions to understand the sampling distribution of p̂ when n = 10 and p = 0.25, which we’ve
plotted in Figure 5.3 alongside a normal distribution with the same mean and variability. These
distributions have a number of important differences.

Sample Proportions
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Figure 5.3: Left: simulations of p̂ when the sample size is n = 10 and the population
proportion is p = 0.25. Right: a normal distribution with the same mean (0.25)
and standard deviation (0.137).

Unimodal? Smooth? Symmetric?
Normal: N(0.25, 0.14) Yes Yes Yes
n = 10, p = 0.25 Yes No No

Notice that the success-failure condition was not satisfied when n = 10 and p = 0.25:

np = 10× 0.25 = 2.5 n(1− p) = 10× 0.75 = 7.5

This single sampling distribution does not show that the success-failure condition is the perfect
guideline, but we have found that the guideline did correctly identify that a normal distribution
might not be appropriate.

We can complete several additional simulations, shown in Figures 5.4 and 5.5, and we can see
some trends:

1. When either np or n(1− p) is small, the distribution is more discrete, i.e. not continuous.

2. When np or n(1− p) is smaller than 10, the skew in the distribution is more noteworthy.

3. The larger both np and n(1−p), the more normal the distribution. This may be a little harder
to see for the larger sample size in these plots as the variability also becomes much smaller.

4. When np and n(1 − p) are both very large, the distribution’s discreteness is hardly evident,
and the distribution looks much more like a normal distribution.



176 CHAPTER 5. FOUNDATIONS FOR INFERENCE

n = 10 n = 25

p = 0.1
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Figure 5.4: Sampling distributions for several scenarios of p and n.
Rows: p = 0.10, p = 0.20, p = 0.50, p = 0.80, and p = 0.90.
Columns: n = 10 and n = 25.



5.1. POINT ESTIMATES AND SAMPLING VARIABILITY 177

n = 50 n = 100 n = 250
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Figure 5.5: Sampling distributions for several scenarios of p and n.
Rows: p = 0.10, p = 0.20, p = 0.50, p = 0.80, and p = 0.90.
Columns: n = 50, n = 100, and n = 250.



178 CHAPTER 5. FOUNDATIONS FOR INFERENCE

So far we’ve only focused on the skew and discreteness of the distributions. We haven’t con-
sidered how the mean and standard error of the distributions change. Take a moment to look back
at the graphs, and pay attention to three things:

1. The centers of the distribution are always at the population proportion, p, that was used to
generate the simulation. Because the sampling distribution of p̂ is always centered at the
population parameter p, it means the sample proportion p̂ is unbiased when the data are
independent and drawn from such a population.

2. For a particular population proportion p, the variability in the sampling distribution decreases
as the sample size n becomes larger. This will likely align with your intuition: an estimate
based on a larger sample size will tend to be more accurate.

3. For a particular sample size, the variability will be largest when p = 0.5. The differences may
be a little subtle, so take a close look. This reflects the role of the proportion p in the standard

error formula: SE =
√

p(1−p)
n . The standard error is largest when p = 0.5.

At no point will the distribution of p̂ look perfectly normal, since p̂ will always be take discrete
values (x/n). It is always a matter of degree, and we will use the standard success-failure condition
with minimums of 10 for np and n(1− p) as our guideline within this book.

5.1.6 Extending the framework for other statistics

The strategy of using a sample statistic to estimate a parameter is quite common, and it’s
a strategy that we can apply to other statistics besides a proportion. For instance, if we want to
estimate the average salary for graduates from a particular college, we could survey a random sample
of recent graduates; in that example, we’d be using a sample mean x̄ to estimate the population
mean µ for all graduates. As another example, if we want to estimate the difference in product
prices for two websites, we might take a random sample of products available on both sites, check
the prices on each, and use then compute the average difference; this strategy certainly would give
us some idea of the actual difference through a point estimate.

While this chapter emphases a single proportion context, we’ll encounter many different con-
texts throughout this book where these methods will be applied. The principles and general ideas
are the same, even if the details change a little. We’ve also sprinkled some other contexts into the
exercises to help you start thinking about how the ideas generalize.
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