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5.3 Hypothesis testing for a proportion

The following question comes from a book written by Hans Rosling, Anna Rosling Rönnlund,
and Ola Rosling called Factfulness:

How many of the world’s 1 year old children today have been vaccinated against some
disease:

a. 20%

b. 50%

c. 80%

Write down what your answer (or guess), and when you’re ready, find the answer in the footnote.13

In this section, we’ll be exploring how people with a 4-year college degree perform on this and
other world health questions as we learn about hypothesis tests, which are a framework used to
rigorously evaluate competing ideas and claims.

5.3.1 Hypothesis testing framework

We’re interested in understanding how much people know about world health and development.
If we take a multiple choice world health question, then we might like to understand if

H0: People never learn these particular topics and their responses are simply equivalent to random
guesses.

HA: People have knowledge that helps them do better than random guessing, or perhaps, they have
false knowledge that leads them to actually do worse than random guessing.

These competing ideas are called hypotheses. We callH0 the null hypothesis andHA the alternative
hypothesis. When there is a subscript 0 like in H0, data scientists pronounce it as “nought” (e.g. H0

is pronounced “H-nought”).

NULL AND ALTERNATIVE HYPOTHESES

The null hypothesis (H0) often represents a skeptical perspective or a claim to be tested.
The alternative hypothesis (HA) represents an alternative claim under consideration and is
often represented by a range of possible parameter values.

Our job as data scientists is to play the role of a skeptic: before we buy into the alternative
hypothesis, we need to see strong supporting evidence.

The null hypothesis often represents a skeptical position or a perspective of “no difference”. In
our first example, we’ll consider whether the typical person does any different than random guessing
on Roslings’ question about infant vaccinations.

The alternative hypothesis generally represents a new or stronger perspective. In the case of
the question about infant vaccinations, it would certainly be interesting to learn whether people do
better than random guessing, since that would mean that the typical person knows something about
world health statistics. It would also be very interesting if we learned that people do worse than
random guessing, which would suggest people believe incorrect information about world health.

The hypothesis testing framework is a very general tool, and we often use it without a second
thought. If a person makes a somewhat unbelievable claim, we are initially skeptical. However,
if there is sufficient evidence that supports the claim, we set aside our skepticism and reject the null
hypothesis in favor of the alternative. The hallmarks of hypothesis testing are also found in the
US court system.

13The correct answer is (c): 80% of the world’s 1 year olds have been vaccinated against some disease.

http://www.openintro.org/redirect.php?go=amazon_factfulness&referrer=os4_pdf
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GUIDED PRACTICE 5.17

A US court considers two possible claims about a defendant: she is either innocent or guilty. If we
set these claims up in a hypothesis framework, which would be the null hypothesis and which the
alternative?14

Jurors examine the evidence to see whether it convincingly shows a defendant is guilty. Even
if the jurors leave unconvinced of guilt beyond a reasonable doubt, this does not mean they believe
the defendant is innocent. This is also the case with hypothesis testing: even if we fail to reject the
null hypothesis, we typically do not accept the null hypothesis as true. Failing to find strong evidence
for the alternative hypothesis is not equivalent to accepting the null hypothesis.

When considering Roslings’ question about infant vaccination, the null hypothesis represents
the notion that the people we will be considering – college-educated adults – are as accurate as
random guessing. That is, the proportion p of respondents who pick the correct answer, that 80%
of 1 year olds have been vaccinated against some disease, is about 33.3% (or 1-in-3 if wanting to
be perfectly precise). The alternative hypothesis is that this proportion is something other than
33.3%. While it’s helpful to write these hypotheses in words, it can be useful to write them using
mathematical notation:

H0: p = 0.333

HA: p 6= 0.333

In this hypothesis setup, we want to make a conclusion about the population parameter p. The
value we are comparing the parameter to is called the null value, which in this case is 0.333. It’s
common to label the null value with the same symbol as the parameter but with a subscript ‘0’.
That is, in this case, the null value is p0 = 0.333 (pronounced “p-nought equals 0.333”).

EXAMPLE 5.18

It may seem impossible that the proportion of people who get the correct answer is exactly 33.3%.
If we don’t believe the null hypothesis, should we simply reject it?

No. While we may not buy into the notion that the proportion is exactly 33.3%, the hypothesis
testing framework requires that there be strong evidence before we reject the null hypothesis and
conclude something more interesting.

After all, even if we don’t believe the proportion is exactly 33.3%, that doesn’t really tell us anything
useful! We would still be stuck with the original question: do people do better or worse than random
guessing on Roslings’ question? Without data that strongly points in one direction or the other, it
is both uninteresting and pointless to reject H0.

GUIDED PRACTICE 5.19

Another example of a real-world hypothesis testing situation is evaluating whether a new drug is
better or worse than an existing drug at treating a particular disease. What should we use for the
null and alternative hypotheses in this case?15

14The jury considers whether the evidence is so convincing (strong) that there is no reasonable doubt regarding the
person’s guilt; in such a case, the jury rejects innocence (the null hypothesis) and concludes the defendant is guilty
(alternative hypothesis).

15The null hypothesis (H0) in this case is the declaration of no difference: the drugs are equally effective. The
alternative hypothesis (HA) is that the new drug performs differently than the original, i.e. it could perform better
or worse.
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5.3.2 Testing hypotheses using confidence intervals

We will use the rosling responses data set to evaluate the hypothesis test evaluating whether
college-educated adults who get the question about infant vaccination correct is different from 33.3%.
This data set summarizes the answers of 50 college-educated adults. Of these 50 adults, 24% of
respondents got the question correct that 80% of 1 year olds have been vaccinated against some
disease.

Up until now, our discussion has been philosophical. However, now that we have data, we might
ask ourselves: does the data provide strong evidence that the proportion of all college-educated adults
who would answer this question correctly is different than 33.3%?

We learned in Section 5.1 that there is fluctuation from one sample to another, and it is
unlikely that our sample proportion, p̂, will exactly equal p, but we want to make a conclusion
about p. We have a nagging concern: is this deviation of 24% from 33.3% simply due to chance,
or does the data provide strong evidence that the population proportion is different from 33.3%?

In Section 5.2, we learned how to quantify the uncertainty in our estimate using confidence
intervals. The same method for measuring variability can be useful for the hypothesis test.

EXAMPLE 5.20

Check whether it is reasonable to construct a confidence interval for p using the sample data, and if
so, construct a 95% confidence interval.

The conditions are met for p̂ to be approximately normal: the data come from a simple random
sample (satisfies independence), and np̂ = 12 and n(1− p̂) = 38 are both at least 10 (success-failure
condition).

To construct the confidence interval, we will need to identify the point estimate (p̂ = 0.24), the critical
value for the 95% confidence level (z? = 1.96), and the standard error of p̂ (SEp̂ =

√
p̂(1− p̂)/n =

0.060). With those pieces, the confidence interval for p can be constructed:

p̂± z? × SEp̂
0.24± 1.96× 0.060

(0.122, 0.358)

We are 95% confident that the proportion of all college-educated adults to correctly answer this
particular question about infant vaccination is between 12.2% and 35.8%.

Because the null value in the hypothesis test is p0 = 0.333, which falls within the range of
plausible values from the confidence interval, we cannot say the null value is implausible.16 That
is, the data do not provide sufficient evidence to reject the notion that the performance of college-
educated adults was different than random guessing, and we do not reject the null hypothesis, H0.

EXAMPLE 5.21

Explain why we cannot conclude that college-educated adults simply guessed on the infant vaccina-
tion question.

While we failed to reject H0, that does not necessarily mean the null hypothesis is true. Perhaps
there was an actual difference, but we were not able to detect it with the relatively small sample
of 50.

DOUBLE NEGATIVES CAN SOMETIMES BE USED IN STATISTICS

In many statistical explanations, we use double negatives. For instance, we might say that the
null hypothesis is not implausible or we failed to reject the null hypothesis. Double negatives
are used to communicate that while we are not rejecting a position, we are also not saying it is
correct.

16Arguably this method is slightly imprecise. As we’ll see in a few pages, the standard error is often computed
slightly differently in the context of a hypothesis test for a proportion.
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GUIDED PRACTICE 5.22

Let’s move onto a second question posed by the Roslings:

There are 2 billion children in the world today aged 0-15 years old, how many children
will there be in year 2100 according to the United Nations?

a. 4 billion.

b. 3 billion.

c. 2 billion.

Set up appropriate hypotheses to evaluate whether college-educated adults are better than random
guessing on this question. Also, see if you can guess the correct answer before checking the answer
in the footnote!17

GUIDED PRACTICE 5.23

This time we took a larger sample of 228 college-educated adults, 34 (14.9%) selected the correct
answer to the question in Guided Practice 5.22: 2 billion. Can we model the sample proportion
using a normal distribution and construct a confidence interval?18

EXAMPLE 5.24

Compute a 95% confidence interval for the fraction of college-educated adults who answered the
children-in-2100 question correctly, and evaluate the hypotheses in Guided Practice 5.22.

To compute the standard error, we’ll again use p̂ in place of p for the calculation:

SEp̂ =

√
p̂(1− p̂)

n
=

√
0.149(1− 0.149)

228
= 0.024

In Guided Practice 5.23, we found that p̂ can be modeled using a normal distribution, which ensures
a 95% confidence interval may be accurately constructed as

p̂ ± z? × SE → 0.149 ± 1.96× 0.024 → (0.103, 0.195)

Because the null value, p0 = 0.333, is not in the confidence interval, a population proportion of 0.333
is implausible and we reject the null hypothesis. That is, the data provide statistically significant
evidence that the actual proportion of college adults who get the children-in-2100 question correct
is different from random guessing. Because the entire 95% confidence interval is below 0.333, we can
conclude college-educated adults do worse than random guessing on this question.

One subtle consideration is that we used a 95% confidence interval. What if we had used a 99%
confidence level? Or even a 99.9% confidence level? It’s possible to come to a different conclusion
if using a different confidence level. Therefore, when we make a conclusion based on confidence
interval, we should also be sure it is clear what confidence level we used.

The worse-than-random performance on this last question is not a fluke: there are many such
world health questions where people do worse than random guessing. In general, the answers suggest
that people tend to be more pessimistic about progress than reality suggests. This topic is discussed
in much greater detail in the Roslings’ book, Factfulness.

17The appropriate hypotheses are:
H0: the proportion who get the answer correct is the same as random guessing: 1-in-3, or p = 0.333.
HA: the proportion who get the answer correct is different than random guessing, p 6= 0.333.
The correct answer to the question is 2 billion. While the world population is projected to increase, the average

age is also expected to rise. That is, the majority of the population growth will happen in older age groups, meaning
people are projected to live longer in the future across much of the world.

18We check both conditions, which are satisfied, so it is reasonable to use a normal distribution for p̂:
Independence. Since the data are from a simple random sample, the observations are independent.
Success-failure. We’ll use p̂ in place of p to check: np̂ = 34 and n(1 − p̂) = 194. Both are greater than 10, so the
success-failure condition is satisfied.

http://www.openintro.org/redirect.php?go=amazon_factfulness&referrer=os4_pdf
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5.3.3 Decision errors

Hypothesis tests are not flawless: we can make an incorrect decision in a statistical hypothesis
test based on the data. For example, in the court system innocent people are sometimes wrongly
convicted and the guilty sometimes walk free. One key distinction with statistical hypothesis tests
is that we have the tools necessary to probabilistically quantify how often we make errors in our
conclusions.

Recall that there are two competing hypotheses: the null and the alternative. In a hypothesis
test, we make a statement about which one might be true, but we might choose incorrectly. There
are four possible scenarios, which are summarized in Figure 5.8.

Test conclusion

do not reject H0 reject H0 in favor of HA

H0 true okay Type 1 Error
Truth

HA true Type 2 Error okay

Figure 5.8: Four different scenarios for hypothesis tests.

A Type 1 Error is rejecting the null hypothesis when H0 is actually true. A Type 2 Error
is failing to reject the null hypothesis when the alternative is actually true.

GUIDED PRACTICE 5.25

In a US court, the defendant is either innocent (H0) or guilty (HA). What does a Type 1 Error
represent in this context? What does a Type 2 Error represent? Figure 5.8 may be useful.19

EXAMPLE 5.26

How could we reduce the Type 1 Error rate in US courts? What influence would this have on the
Type 2 Error rate?

To lower the Type 1 Error rate, we might raise our standard for conviction from “beyond a reasonable
doubt” to “beyond a conceivable doubt” so fewer people would be wrongly convicted. However, this
would also make it more difficult to convict the people who are actually guilty, so we would make
more Type 2 Errors.

GUIDED PRACTICE 5.27

How could we reduce the Type 2 Error rate in US courts? What influence would this have on the
Type 1 Error rate?20

Exercises 5.25-5.27 provide an important lesson: if we reduce how often we make one type of
error, we generally make more of the other type.

Hypothesis testing is built around rejecting or failing to reject the null hypothesis. That is, we
do not reject H0 unless we have strong evidence. But what precisely does strong evidence mean? As
a general rule of thumb, for those cases where the null hypothesis is actually true, we do not want
to incorrectly reject H0 more than 5% of the time. This corresponds to a significance level of
0.05. That is, if the null hypothesis is true, the significance level indicates how often the data lead
us to incorrectly reject H0. We often write the significance level using α (the Greek letter alpha):
α = 0.05. We discuss the appropriateness of different significance levels in Section 5.3.5.

19If the court makes a Type 1 Error, this means the defendant is innocent (H0 true) but wrongly convicted. Note
that a Type 1 Error is only possible if we’ve rejected the null hypothesis.

A Type 2 Error means the court failed to reject H0 (i.e. failed to convict the person) when she was in fact guilty
(HA true). Note that a Type 2 Error is only possible if we have failed to reject the null hypothesis.

20To lower the Type 2 Error rate, we want to convict more guilty people. We could lower the standards for
conviction from “beyond a reasonable doubt” to “beyond a little doubt”. Lowering the bar for guilt will also result
in more wrongful convictions, raising the Type 1 Error rate.
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If we use a 95% confidence interval to evaluate a hypothesis test and the null hypothesis happens
to be true, we will make an error whenever the point estimate is at least 1.96 standard errors away
from the population parameter. This happens about 5% of the time (2.5% in each tail). Similarly,
using a 99% confidence interval to evaluate a hypothesis is equivalent to a significance level of
α = 0.01.

A confidence interval is very helpful in determining whether or not to reject the null hypothesis.
However, the confidence interval approach isn’t always sustainable. In several sections, we will
encounter situations where a confidence interval cannot be constructed. For example, if we wanted
to evaluate the hypothesis that several proportions are equal, it isn’t clear how to construct and
compare many confidence intervals altogether.

Next we will introduce a statistic called the p-value to help us expand our statistical toolkit,
which will enable us to both better understand the strength of evidence and work in more complex
data scenarios in later sections.

5.3.4 Formal testing using p-values

The p-value is a way of quantifying the strength of the evidence against the null hypothesis
and in favor of the alternative hypothesis. Statistical hypothesis testing typically uses the p-value
method rather than making a decision based on confidence intervals.

P-VALUE

The p-value is the probability of observing data at least as favorable to the alternative hy-
pothesis as our current data set, if the null hypothesis were true. We typically use a summary
statistic of the data, in this section the sample proportion, to help compute the p-value and
evaluate the hypotheses.

EXAMPLE 5.28

Pew Research asked a random sample of 1000 American adults whether they supported the increased
usage of coal to produce energy. Set up hypotheses to evaluate whether a majority of American
adults support or oppose the increased usage of coal.

The uninteresting result is that there is no majority either way: half of Americans support and the
other half oppose expanding the use of coal to produce energy. The alternative hypothesis would be
that there is a majority support or oppose (though we do not known which one!) expanding the use
of coal. If p represents the proportion supporting, then we can write the hypotheses as

H0: p = 0.5

HA: p 6= 0.5

In this case, the null value is p0 = 0.5.

When evaluating hypotheses for proportions using the p-value method, we will slightly modify
how we check the success-failure condition and compute the standard error for the single proportion
case. These changes aren’t dramatic, but pay close attention to how we use the null value, p0.
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EXAMPLE 5.29

Pew Research’s sample show that 37% of American adults support increased usage of coal. We now
wonder, does 37% represent a real difference from the null hypothesis of 50%? What would the
sampling distribution of p̂ look like if the null hypothesis were true?

If the null hypothesis were true, the population proportion would be the null value, 0.5. We previ-
ously learned that the sampling distribution of p̂ will be normal when two conditions are met:

Independence. The poll was based on a simple random sample, so independence is satisfied.

Success-failure. Based on the poll’s sample size of n = 1000, the success-failure condition is met,
since

np
H0= 1000× 0.5 = 500 n(1− p) H0= 1000× (1− 0.5) = 500

are both at least 10. Note that the success-failure condition was checked using the null value,
p0 = 0.5; this is the first procedural difference from confidence intervals.

If the null hypothesis were true, the sampling distribution indicates that a sample proportion based
on n = 1000 observations would be normally distributed. Next, we can compute the standard error,
where we will again use the null value p0 = 0.5 in the calculation:

SEp̂ =

√
p(1− p)

n

H0=

√
0.5× (1− 0.5)

1000
= 0.016

This marks the other procedural difference from confidence intervals: since the sampling distribu-
tion is determined under the null proportion, the null value p0 was used for the proportion in the
calculation rather than p̂.

Ultimately, if the null hypothesis were true, then the sample proportion should follow a normal
distribution with mean 0.5 and a standard error of 0.016. This distribution is shown in Figure 5.9.

0.37 0.50

Observed p̂ = 0.37

Figure 5.9: If the null hypothesis were true, this normal distribution describes the
distribution of p̂.

CHECKING SUCCESS-FAILURE AND COMPUTING SEP̂ FOR A HYPOTHESIS TEST

When using the p-value method to evaluate a hypothesis test, we check the conditions for p̂ and
construct the standard error using the null value, p0, instead of using the sample proportion.

In a hypothesis test with a p-value, we are supposing the null hypothesis is true, which is a
different mindset than when we compute a confidence interval. This is why we use p0 instead
of p̂ when we check conditions and compute the standard error in this context.

When we identify the sampling distribution under the null hypothesis, it has a special name:
the null distribution. The p-value represents the probability of the observed p̂, or a p̂ that is more
extreme, if the null hypothesis were true. To find the p-value, we generally find the null distribution,
and then we find a tail area in that distribution corresponding to our point estimate.



196 CHAPTER 5. FOUNDATIONS FOR INFERENCE

EXAMPLE 5.30

If the null hypothesis were true, determine the chance of finding p̂ at least as far into the tails as
0.37 under the null distribution, which is a normal distribution with mean µ = 0.5 and SE = 0.016.

This is a normal probability problem where x = 0.37. First, we draw a simple graph to represent
the situation, similar to what is shown in Figure 5.9. Since p̂ is so far out in the tail, we know the
tail area is going to be very small. To find it, we start by computing the Z-score using the mean of
0.5 and the standard error of 0.016:

Z =
0.37− 0.5

0.016
= −8.125

We can use software to find the tail area: 2.2 × 10−16 (0.00000000000000022). If using the normal
probability table in Appendix C.1, we’d find that Z = −8.125 is off the table, so we would use the
smallest area listed: 0.0002.

The potential p̂’s in the upper tail beyond 0.63, which are shown in Figure 5.10, also represent
observations at least as extreme as the observed value of 0.37. To account for these values that are
also more extreme under the hypothesis setup, we double the lower tail to get an estimate of the
p-value: 4.4× 10−16 (or if using the table method, 0.0004).

The p-value represents the probability of observing such an extreme sample proportion by chance,
if the null hypothesis were true.

0.37 0.50 0.63

Tail Area for p̂ Equally unlikely if H0 is true

Figure 5.10: If H0 were true, then the values above 0.63 are just as unlikely as
values below 0.37.

EXAMPLE 5.31

How should we evaluate the hypotheses using the p-value of 4.4×10−16? Use the standard significance
level of α = 0.05.

If the null hypothesis were true, there’s only an incredibly small chance of observing such an extreme
deviation of p̂ from 0.5. This means one of the following must be true:

1. The null hypothesis is true, and we just happened to get observe something so extreme that
only happens about once in every 23 quadrillion times (1 quadrillion = 1 million × 1 billion).

2. The alternative hypothesis is true, which would be consistent with observing a sample propor-
tion far from 0.5.

The first scenario is laughably improbable, while the second scenario seems much more plausible.

Formally, when we evaluate a hypothesis test, we compare the p-value to the significance level, which
in this case is α = 0.05. Since the p-value is less than α, we reject the null hypothesis. That is,
the data provide strong evidence against H0. The data indicate the direction of the difference: a
majority of Americans do not support expanding the use of coal-powered energy.
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COMPARE THE P-VALUE TO ααα TO EVALUATEH0H0H0

When the p-value is less than the significance level, α, reject H0. We would report a conclusion
that the data provide strong evidence supporting the alternative hypothesis.

When the p-value is greater than α, do not reject H0, and report that we do not have sufficient
evidence to reject the null hypothesis.

In either case, it is important to describe the conclusion in the context of the data.

GUIDED PRACTICE 5.32

Do a majority of Americans support or oppose nuclear arms reduction? Set up hypotheses to
evaluate this question.21

EXAMPLE 5.33

A simple random sample of 1028 US adults in March 2013 show that 56% support nuclear arms
reduction. Does this provide convincing evidence that a majority of Americans supported nuclear
arms reduction at the 5% significance level?

First, check conditions:

Independence. The poll was of a simple random sample of US adults, meaning the observations
are independent.

Success-failure. In a one-proportion hypothesis test, this condition is checked using the null pro-
portion, which is p0 = 0.5 in this context: np0 = n(1− p0) = 1028× 0.5 = 514 ≥ 10.

With these conditions verified, we can model p̂ using a normal model.

Next the standard error can be computed. The null value p0 is used again here, because this is a
hypothesis test for a single proportion.

SEp̂ =

√
p0(1− p0)

n
=

√
0.5(1− 0.5)

1028
= 0.0156

Based on the normal model, the test statistic can be computed as the Z-score of the point estimate:

Z =
point estimate− null value

SE
=

0.56− 0.50

0.0156
= 3.85

It’s generally helpful to draw null distribution and the tail areas of interest for computing the p-value:

0.5 0.56

upper taillower tail

The upper tail area is about 0.0001, and we double this tail area to get the p-value: 0.0002. Because
the p-value is smaller than 0.05, we reject H0. The poll provides convincing evidence that a majority
of Americans supported nuclear arms reduction efforts in March 2013.

21We would like to understand if a majority supports or opposes, or ultimately, if there is no difference. If p is the
proportion of Americans who support nuclear arms reduction, then H0: p = 0.50 and HA: p 6= 0.50.



198 CHAPTER 5. FOUNDATIONS FOR INFERENCE

HYPOTHESIS TESTING FOR A SINGLE PROPORTION

Once you’ve determined a one-proportion hypothesis test is the correct procedure, there are
four steps to completing the test:

Prepare. Identify the parameter of interest, list hypotheses, identify the significance level, and
identify p̂ and n.

Check. Verify conditions to ensure p̂ is nearly normal under H0. For one-proportion hypothesis
tests, use the null value to check the success-failure condition.

Calculate. If the conditions hold, compute the standard error, again using p0, compute the
Z-score, and identify the p-value.

Conclude. Evaluate the hypothesis test by comparing the p-value to α, and provide a conclu-
sion in the context of the problem.

5.3.5 Choosing a significance level

Choosing a significance level for a test is important in many contexts, and the traditional level
is α = 0.05. However, it can be helpful to adjust the significance level based on the application.
We may select a level that is smaller or larger than 0.05 depending on the consequences of any
conclusions reached from the test.

If making a Type 1 Error is dangerous or especially costly, we should choose a small significance
level (e.g. 0.01). Under this scenario we want to be very cautious about rejecting the null hypothesis,
so we demand very strong evidence favoring HA before we would reject H0.

If a Type 2 Error is relatively more dangerous or much more costly than a Type 1 Error, then
we might choose a higher significance level (e.g. 0.10). Here we want to be cautious about failing to
reject H0 when the alternative hypothesis is actually true.

Additionally, if the cost of collecting data is small relative to the cost of a Type 2 Error, then
it may also be a good strategy to collect more data. Under this strategy, the Type 2 Error can be
reduced while not affecting the Type 1 Error rate. Of course, collecting extra data is often costly,
so there is typically a cost-benefit analysis to be considered.

EXAMPLE 5.34

A car manufacturer is considering switching to a new, higher quality piece of equipment that con-
structs vehicle door hinges. They figure that they will save money in the long run if this new machine
produces hinges that have flaws less than 0.2% of the time. However, if the hinges are flawed more
than 0.2% of the time, they wouldn’t get a good enough return-on-investment from the new piece
of equipment, and they would lose money. Is there good reason to modify the significance level in
such a hypothesis test?

The null hypothesis would be that the rate of flawed hinges is 0.2%, while the alternative is that it
the rate is different than 0.2%. This decision is just one of many that have a marginal impact on
the car and company. A significance level of 0.05 seems reasonable since neither a Type 1 or Type 2
Error should be dangerous or (relatively) much more expensive.
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EXAMPLE 5.35

The same car manufacturer is considering a slightly more expensive supplier for parts related to
safety, not door hinges. If the durability of these safety components is shown to be better than the
current supplier, they will switch manufacturers. Is there good reason to modify the significance
level in such an evaluation?

The null hypothesis would be that the suppliers’ parts are equally reliable. Because safety is involved,
the car company should be eager to switch to the slightly more expensive manufacturer (reject H0),
even if the evidence of increased safety is only moderately strong. A slightly larger significance level,
such as α = 0.10, might be appropriate.

GUIDED PRACTICE 5.36

A part inside of a machine is very expensive to replace. However, the machine usually functions
properly even if this part is broken, so the part is replaced only if we are extremely certain it is
broken based on a series of measurements. Identify appropriate hypotheses for this test (in plain
language) and suggest an appropriate significance level.22

WHY IS 0.05 THE DEFAULT?

The α = 0.05 threshold is most common. But why? Maybe the standard level should be
smaller, or perhaps larger. If you’re a little puzzled, you’re reading with an extra critical eye –
good job! We’ve made a 5-minute task to help clarify why 0.05 :

www.openintro.org/why05

5.3.6 Statistical significance versus practical significance

When the sample size becomes larger, point estimates become more precise and any real differ-
ences in the mean and null value become easier to detect and recognize. Even a very small difference
would likely be detected if we took a large enough sample. Sometimes researchers will take such large
samples that even the slightest difference is detected, even differences where there is no practical
value. In such cases, we still say the difference is statistically significant, but it is not practi-
cally significant. For example, an online experiment might identify that placing additional ads on
a movie review website statistically significantly increases viewership of a TV show by 0.001%, but
this increase might not have any practical value.

One role of a data scientist in conducting a study often includes planning the size of the study.
The data scientist might first consult experts or scientific literature to learn what would be the
smallest meaningful difference from the null value. She also would obtain other information, such
as a very rough estimate of the true proportion p, so that she could roughly estimate the standard
error. From here, she can suggest a sample size that is sufficiently large that, if there is a real
difference that is meaningful, we could detect it. While larger sample sizes may still be used, these
calculations are especially helpful when considering costs or potential risks, such as possible health
impacts to volunteers in a medical study.

22Here the null hypothesis is that the part is not broken, and the alternative is that it is broken. If we don’t have
sufficient evidence to reject H0, we would not replace the part. It sounds like failing to fix the part if it is broken
(H0 false, HA true) is not very problematic, and replacing the part is expensive. Thus, we should require very strong
evidence against H0 before we replace the part. Choose a small significance level, such as α = 0.01.

http://www.openintro.org/redirect.php?go=textbook-why05&referrer=os4_pdf
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5.3.7 One-sided hypothesis tests (special topic)

So far we’ve only considered what are called two-sided hypothesis tests, where we care about
detecting whether p is either above or below some null value p0. There is a second type of hypothesis
test called a one-sided hypothesis test. For a one-sided hypothesis test, the hypotheses take one
of the following forms:

1. There’s only value in detecting if the population parameter is less than some value p0. In this
case, the alternative hypothesis is written as p < p0 for some null value p0.

2. There’s only value in detecting if the population parameter is more than some value p0: In this
case, the alternative hypothesis is written as p > p0.

While we adjust the form of the alternative hypothesis, we continue to write the null hypothesis
using an equals-sign in the one-sided hypothesis test case.

In the entire hypothesis testing procedure, there is only one difference in evaluating a one-
sided hypothesis test vs a two-sided hypothesis test: how to compute the p-value. In a one-sided
hypothesis test, we compute the p-value as the tail area in the direction of the alternative hypothesis
only, meaning it is represented by a single tail area. Herein lies the reason why one-sided tests are
sometimes interesting: if we don’t have to double the tail area to get the p-value, then the p-value
is smaller and the level of evidence required to identify an interesting finding in the direction of the
alternative hypothesis goes down. However, one-sided tests aren’t all sunshine and rainbows: the
heavy price paid is that any interesting findings in the opposite direction must be disregarded.

EXAMPLE 5.37

In Section 1.1, we encountered an example where doctors were interested in determining whether
stents would help people who had a high risk of stroke. The researchers believed the stents would
help. Unfortunately, the data showed the opposite: patients who received stents actually did worse.
Why was using a two-sided test so important in this context?

Before the study, researchers had reason to believe that stents would help patients since existing
research suggested stents helped in patients with heart attacks. It would surely have been tempting
to use a one-sided test in this situation, and had they done this, they would have limited their ability
to identify potential harm to patients.

Example 5.37 highlights that using a one-sided hypothesis creates a risk of overlooking data
supporting the opposite conclusion. We could have made a similar error when reviewing the Roslings’
question data this section; if we had a pre-conceived notion that college-educated people wouldn’t do
worse than random guessing and so used a one-sided test, we would have missed the really interesting
finding that many people have incorrect knowledge about global public health.

When might a one-sided test be appropriate to use? Very rarely. Should you ever find yourself
considering using a one-sided test, carefully answer the following question:

What would I, or others, conclude if the data happens to go clearly in the opposite direc-
tion than my alternative hypothesis?

If you or others would find any value in making a conclusion about the data that goes in the
opposite direction of a one-sided test, then a two-sided hypothesis test should actually be used.
These considerations can be subtle, so exercise caution. We will only apply two-sided tests in the
rest of this book.
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EXAMPLE 5.38

Why can’t we simply run a one-sided test that goes in the direction of the data?

We’ve been building a careful framework that controls for the Type 1 Error, which is the significance
level α in a hypothesis test. We’ll use the α = 0.05 below to keep things simple.

Imagine we could pick the one-sided test after we saw the data. What will go wrong?

• If p̂ is smaller than the null value, then a one-sided test where p < p0 would mean that any
observation in the lower 5% tail of the null distribution would lead to us rejecting H0.

• If p̂ is larger than the null value, then a one-sided test where p > p0 would mean that any
observation in the upper 5% tail of the null distribution would lead to us rejecting H0.

Then if H0 were true, there’s a 10% chance of being in one of the two tails, so our testing error is
actually α = 0.10, not 0.05. That is, not being careful about when to use one-sided tests effectively
undermines the methods we’re working so hard to develop and utilize.
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