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6.2 Difference of two proportions

We would like to extend the methods from Section 6.1 to apply confidence intervals and hy-
pothesis tests to differences in population proportions: p1 − p2. In our investigations, we’ll identify
a reasonable point estimate of p1 − p2 based on the sample, and you may have already guessed its
form: p̂1 − p̂2. Next, we’ll apply the same processes we used in the single-proportion context: we
verify that the point estimate can be modeled using a normal distribution, we compute the estimate’s
standard error, and we apply our inferential framework.

6.2.1 Sampling distribution of the difference of two proportions

Like with p̂, the difference of two sample proportions p̂1 − p̂2 can be modeled using a normal
distribution when certain conditions are met. First, we require a broader independence condition,
and secondly, the success-failure condition must be met by both groups.

CONDITIONS FOR THE SAMPLING DISTRIBUTION OF p̂1 − p̂2p̂1 − p̂2p̂1 − p̂2 TO BE NORMAL

The difference p̂1 − p̂2 can be modeled using a normal distribution when

• Independence, extended. The data are independent within and between the two groups.
Generally this is satisfied if the data come from two independent random samples or if
the data come from a randomized experiment.

• Success-failure condition. The success-failure condition holds for both groups, where we
check successes and failures in each group separately.

When these conditions are satisfied, the standard error of p̂1 − p̂2 is

SE =

√
p1(1− p1)

n1
+
p2(1− p2)

n2

where p1 and p2 represent the population proportions, and n1 and n2 represent the sample sizes.

6.2.2 Confidence intervals for p1 − p2p1 − p2p1 − p2

We can apply the generic confidence interval formula for a difference of two proportions, where we
use p̂1 − p̂2 as the point estimate and substitute the SE formula:

point estimate ± z? × SE → p̂1 − p̂2 ± z? ×

√
p1(1− p1)

n1
+
p2(1− p2)

n2

We can also follow the same Prepare, Check, Calculate, Conclude steps for computing a confidence
interval or completing a hypothesis test. The details change a little, but the general approach remain
the same. Think about these steps when you apply statistical methods.
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EXAMPLE 6.11

We consider an experiment for patients who underwent cardiopulmonary resuscitation (CPR) for a
heart attack and were subsequently admitted to a hospital. These patients were randomly divided
into a treatment group where they received a blood thinner or the control group where they did not
receive a blood thinner. The outcome variable of interest was whether the patients survived for at
least 24 hours. The results are shown in Figure 6.1. Check whether we can model the difference in
sample proportions using the normal distribution.

We first check for independence: since this is a randomized experiment, this condition is satisfied.

Next, we check the success-failure condition for each group. We have at least 10 successes and 10
failures in each experiment arm (11, 14, 39, 26), so this condition is also satisfied.

With both conditions satisfied, the difference in sample proportions can be reasonably modeled using
a normal distribution for these data.

Survived Died Total
Control 11 39 50
Treatment 14 26 40
Total 25 65 90

Figure 6.1: Results for the CPR study. Patients in the treatment group were given
a blood thinner, and patients in the control group were not.

EXAMPLE 6.12

Create and interpret a 90% confidence interval of the difference for the survival rates in the CPR
study.

We’ll use pt for the survival rate in the treatment group and pc for the control group:

p̂t − p̂c =
14

40
− 11

50
= 0.35− 0.22 = 0.13

We use the standard error formula provided on page 217. As with the one-sample proportion case,
we use the sample estimates of each proportion in the formula in the confidence interval context:

SE ≈
√

0.35(1− 0.35)

40
+

0.22(1− 0.22)

50
= 0.095

For a 90% confidence interval, we use z? = 1.65:

point estimate ± z? × SE → 0.13 ± 1.65× 0.095 → (−0.027, 0.287)

We are 90% confident that blood thinners have a difference of -2.7% to +28.7% percentage point
impact on survival rate for patients who are like those in the study. Because 0% is contained in
the interval, we do not have enough information to say whether blood thinners help or harm heart
attack patients who have been admitted after they have undergone CPR.
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GUIDED PRACTICE 6.13

A 5-year experiment was conducted to evaluate the effectiveness of fish oils on reducing cardiovascular
events, where each subject was randomized into one of two treatment groups. We’ll consider heart
attack outcomes in these patients:

heart attack no event Total
fish oil 145 12788 12933
placebo 200 12738 12938

Create a 95% confidence interval for the effect of fish oils on heart attacks for patients who are
well-represented by those in the study. Also interpret the interval in the context of the study.16

6.2.3 Hypothesis tests for the difference of two proportions

A mammogram is an X-ray procedure used to check for breast cancer. Whether mammograms
should be used is part of a controversial discussion, and it’s the topic of our next example where we
learn about 2-proportion hypothesis tests when H0 is p1 − p2 = 0 (or equivalently, p1 = p2).

A 30-year study was conducted with nearly 90,000 female participants. During a 5-year screen-
ing period, each woman was randomized to one of two groups: in the first group, women received
regular mammograms to screen for breast cancer, and in the second group, women received regular
non-mammogram breast cancer exams. No intervention was made during the following 25 years of
the study, and we’ll consider death resulting from breast cancer over the full 30-year period. Results
from the study are summarized in Figure 6.2.

If mammograms are much more effective than non-mammogram breast cancer exams, then we
would expect to see additional deaths from breast cancer in the control group. On the other hand, if
mammograms are not as effective as regular breast cancer exams, we would expect to see an increase
in breast cancer deaths in the mammogram group.

Death from breast cancer?
Yes No

Mammogram 500 44,425
Control 505 44,405

Figure 6.2: Summary results for breast cancer study.

GUIDED PRACTICE 6.14

Is this study an experiment or an observational study?17

16 Because the patients were randomized, the subjects are independent, both within and between the two groups.
The success-failure condition is also met for both groups as all counts are at least 10. This satisfies the conditions
necessary to model the difference in proportions using a normal distribution.

Compute the sample proportions (p̂fish oil = 0.0112, p̂placebo = 0.0155), point estimate of the difference (0.0112 −
0.0155 = −0.0043), and standard error (SE =

√
0.0112×0.9888

12933
+ 0.0155×0.9845

12938
= 0.00145). Next, plug the values into

the general formula for a confidence interval, where we’ll use a 95% confidence level with z? = 1.96:

−0.0043± 1.96× 0.00145 → (−0.0071,−0.0015)

We are 95% confident that fish oils decreases heart attacks by 0.15 to 0.71 percentage points (off of a baseline of about
1.55%) over a 5-year period for subjects who are similar to those in the study. Because the interval is entirely below 0,
the data provide strong evidence that fish oil supplements reduce heart attacks in patients like those in the study.

17This is an experiment. Patients were randomized to receive mammograms or a standard breast cancer exam. We
will be able to make causal conclusions based on this study.
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GUIDED PRACTICE 6.15

Set up hypotheses to test whether there was a difference in breast cancer deaths in the mammogram
and control groups.18

In Example 6.16, we will check the conditions for using a normal distribution to analyze the
results of the study. The details are very similar to that of confidence intervals. However, when the
null hypothesis is that p1 − p2 = 0, we use a special proportion called the pooled proportion to
check the success-failure condition:

p̂pooled =
# of patients who died from breast cancer in the entire study

# of patients in the entire study

=
500 + 505

500 + 44,425 + 505 + 44,405

= 0.0112

This proportion is an estimate of the breast cancer death rate across the entire study, and it’s our
best estimate of the proportions pmgm and pctrl if the null hypothesis is true that pmgm = pctrl.
We will also use this pooled proportion when computing the standard error.

EXAMPLE 6.16

Is it reasonable to model the difference in proportions using a normal distribution in this study?

Because the patients are randomized, they can be treated as independent, both within and between
groups. We also must check the success-failure condition for each group. Under the null hypothesis,
the proportions pmgm and pctrl are equal, so we check the success-failure condition with our best
estimate of these values under H0, the pooled proportion from the two samples, p̂pooled = 0.0112:

p̂pooled × nmgm = 0.0112× 44,925 = 503 (1− p̂pooled)× nmgm = 0.9888× 44,925 = 44,422

p̂pooled × nctrl = 0.0112× 44,910 = 503 (1− p̂pooled)× nctrl = 0.9888× 44,910 = 44,407

The success-failure condition is satisfied since all values are at least 10. With both conditions
satisfied, we can safely model the difference in proportions using a normal distribution.

USE THE POOLED PROPORTION WHENH0H0H0 IS p1 − p2 = 0p1 − p2 = 0p1 − p2 = 0

When the null hypothesis is that the proportions are equal, use the pooled proportion (p̂pooled)
to verify the success-failure condition and estimate the standard error:

p̂pooled =
number of “successes”

number of cases
=
p̂1n1 + p̂2n2

n1 + n2

Here p̂1n1 represents the number of successes in sample 1 since

p̂1 =
number of successes in sample 1

n1

Similarly, p̂2n2 represents the number of successes in sample 2.

In Example 6.16, the pooled proportion was used to check the success-failure condition.19 In the
next example, we see the second place where the pooled proportion comes into play: the standard
error calculation.

18H0: the breast cancer death rate for patients screened using mammograms is the same as the breast cancer death
rate for patients in the control, pmgm − pctrl = 0.
HA: the breast cancer death rate for patients screened using mammograms is different than the breast cancer death
rate for patients in the control, pmgm − pctrl 6= 0.

19For an example of a two-proportion hypothesis test that does not require the success-failure condition to be met,
see Section 2.3.
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EXAMPLE 6.17

Compute the point estimate of the difference in breast cancer death rates in the two groups, and
use the pooled proportion p̂pooled = 0.0112 to calculate the standard error.

The point estimate of the difference in breast cancer death rates is

p̂mgm − p̂ctrl =
500

500 + 44, 425
− 505

505 + 44, 405

= 0.01113− 0.01125

= −0.00012

The breast cancer death rate in the mammogram group was 0.012% less than in the control group.
Next, the standard error is calculated using the pooled proportion, p̂pooled:

SE =

√
p̂pooled(1− p̂pooled)

nmgm
+
p̂pooled(1− p̂pooled)

nctrl
= 0.00070

EXAMPLE 6.18

Using the point estimate p̂mgm − p̂ctrl = −0.00012 and standard error SE = 0.00070, calculate a
p-value for the hypothesis test and write a conclusion.

Just like in past tests, we first compute a test statistic and draw a picture:

Z =
point estimate− null value

SE
=
−0.00012− 0

0.00070
= −0.17

−0.0014 0 0.0014

The lower tail area is 0.4325, which we double to get the p-value: 0.8650. Because this p-value is
larger than 0.05, we do not reject the null hypothesis. That is, the difference in breast cancer death
rates is reasonably explained by chance, and we do not observe benefits or harm from mammograms
relative to a regular breast exam.

Can we conclude that mammograms have no benefits or harm? Here are a few considerations
to keep in mind when reviewing the mammogram study as well as any other medical study:

• We do not accept the null hypothesis, which means we don’t have sufficient evidence to conclude
that mammograms reduce or increase breast cancer deaths.

• If mammograms are helpful or harmful, the data suggest the effect isn’t very large.

• Are mammograms more or less expensive than a non-mammogram breast exam? If one option
is much more expensive than the other and doesn’t offer clear benefits, then we should lean
towards the less expensive option.

• The study’s authors also found that mammograms led to overdiagnosis of breast cancer, which
means some breast cancers were found (or thought to be found) but that these cancers would
not cause symptoms during patients’ lifetimes. That is, something else would kill the patient
before breast cancer symptoms appeared. This means some patients may have been treated for
breast cancer unnecessarily, and this treatment is another cost to consider. It is also important
to recognize that overdiagnosis can cause unnecessary physical or emotional harm to patients.

These considerations highlight the complexity around medical care and treatment recommendations.
Experts and medical boards who study medical treatments use considerations like those above to
provide their best recommendation based on the current evidence.
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6.2.4 More on 2-proportion hypothesis tests (special topic)

When we conduct a 2-proportion hypothesis test, usually H0 is p1 − p2 = 0. However, there
are rare situations where we want to check for some difference in p1 and p2 that is some value other
than 0. For example, maybe we care about checking a null hypothesis where p1 − p2 = 0.1. In
contexts like these, we generally use p̂1 and p̂2 to check the success-failure condition and construct
the standard error.

GUIDED PRACTICE 6.19

A quadcopter company is considering a new manufacturer for rotor blades. The new manufacturer
would be more expensive, but they claim their higher-quality blades are more reliable, with 3% more
blades passing inspection than their competitor. Set up appropriate hypotheses for the test.20

Figure 6.3: A Phantom quadcopter.
—————————–
Photo by David J (http://flic.kr/p/oiWLNu). CC-BY 2.0 license.

This photo has been cropped and a border has been added.

20H0: The higher-quality blades will pass inspection 3% more frequently than the standard-quality blades. phighQ−
pstandard = 0.03. HA: The higher-quality blades will pass inspection some amount different than 3% more often than
the standard-quality blades. phighQ − pstandard 6= 0.03.

http://www.openintro.org/redirect.php?go=textbook-quadcopter_david_j&referrer=os4_pdf
http://www.openintro.org/redirect.php?go=textbook-CC_BY_2&referrer=os4_pdf
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EXAMPLE 6.20

The quality control engineer from Guided Practice 6.19 collects a sample of blades, examining 1000
blades from each company, and she finds that 899 blades pass inspection from the current supplier
and 958 pass inspection from the prospective supplier. Using these data, evaluate the hypotheses
from Guided Practice 6.19 with a significance level of 5%.

First, we check the conditions. The sample is not necessarily random, so to proceed we must assume
the blades are all independent; for this sample we will suppose this assumption is reasonable, but
the engineer would be more knowledgeable as to whether this assumption is appropriate. The
success-failure condition also holds for each sample. Thus, the difference in sample proportions,
0.958− 0.899 = 0.059, can be said to come from a nearly normal distribution.

The standard error is computed using the two sample proportions since we do not use a pooled
proportion for this context:

SE =

√
0.958(1− 0.958)

1000
+

0.899(1− 0.899)

1000
= 0.0114

In this hypothesis test, because the null is that p1 − p2 = 0.03, the sample proportions were used
for the standard error calculation rather than a pooled proportion.

Next, we compute the test statistic and use it to find the p-value, which is depicted in Figure 6.4.

Z =
point estimate− null value

SE
=

0.059− 0.03

0.0114
= 2.54

Using a standard normal distribution for this test statistic, we identify the right tail area as 0.006,
and we double it to get the p-value: 0.012. We reject the null hypothesis because 0.012 is less
than 0.05. Since we observed a larger-than-3% increase in blades that pass inspection, we have
statistically significant evidence that the higher-quality blades pass inspection more than 3% as
often as the currently used blades, exceeding the company’s claims.

0.03 0.059
(null value)

0.006

Figure 6.4: Distribution of the test statistic if the null hypothesis was true. The
p-value is represented by the shaded areas.
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6.2.5 Examining the standard error formula (special topic)

This subsection covers more theoretical topics that offer deeper insights into the origins of the
standard error formula for the difference of two proportions. Ultimately, all of the standard error
formulas we encounter in this chapter and in Chapter 7 can be derived from the probability principles
of Section 3.4.

The formula for the standard error of the difference in two proportions can be deconstructed
into the formulas for the standard errors of the individual sample proportions. Recall that the
standard error of the individual sample proportions p̂1 and p̂2 are

SEp̂1 =

√
p1(1− p1)

n1
SEp̂2 =

√
p2(1− p2)

n2

The standard error of the difference of two sample proportions can be deconstructed from the
standard errors of the separate sample proportions:

SEp̂1−p̂2 =
√
SE2

p̂1
+ SE2

p̂2
=

√
p1(1− p1)

n1
+
p2(1− p2)

n2

This special relationship follows from probability theory.

GUIDED PRACTICE 6.21

Prerequisite: Section 3.4. We can rewrite the equation above in a different way:

SE2
p̂1−p̂2 = SE2

p̂1 + SE2
p̂2

Explain where this formula comes from using the formula for the variability of the sum of two random
variables.21

21The standard error squared represents the variance of the estimate. If X and Y are two random variables with
variances σ2

x and σ2
y , then the variance of X − Y is σ2

x + σ2
y . Likewise, the variance corresponding to p̂1 − p̂2 is

σ2
p̂1

+σ2
p̂2

. Because σ2
p̂1

and σ2
p̂2

are just another way of writing SE2
p̂1

and SE2
p̂2

, the variance associated with p̂1− p̂2

may be written as SE2
p̂1

+ SE2
p̂2

.
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