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6.3 Testing for goodness of fit using chi-square

In this section, we develop a method for assessing a null model when the data are binned. This
technique is commonly used in two circumstances:

• Given a sample of cases that can be classified into several groups, determine if the sample is
representative of the general population.

• Evaluate whether data resemble a particular distribution, such as a normal distribution or a
geometric distribution.

Each of these scenarios can be addressed using the same statistical test: a chi-square test.
In the first case, we consider data from a random sample of 275 jurors in a small county. Jurors

identified their racial group, as shown in Figure 6.5, and we would like to determine if these jurors
are racially representative of the population. If the jury is representative of the population, then
the proportions in the sample should roughly reflect the population of eligible jurors, i.e. registered
voters.

Race White Black Hispanic Other Total
Representation in juries 205 26 25 19 275
Registered voters 0.72 0.07 0.12 0.09 1.00

Figure 6.5: Representation by race in a city’s juries and population.

While the proportions in the juries do not precisely represent the population proportions, it is
unclear whether these data provide convincing evidence that the sample is not representative. If the
jurors really were randomly sampled from the registered voters, we might expect small differences
due to chance. However, unusually large differences may provide convincing evidence that the juries
were not representative.

A second application, assessing the fit of a distribution, is presented at the end of this section.
Daily stock returns from the S&P500 for 25 years are used to assess whether stock activity each day
is independent of the stock’s behavior on previous days.

In these problems, we would like to examine all bins simultaneously, not simply compare one
or two bins at a time, which will require us to develop a new test statistic.

6.3.1 Creating a test statistic for one-way tables

EXAMPLE 6.22

Of the people in the city, 275 served on a jury. If the individuals are randomly selected to serve on a
jury, about how many of the 275 people would we expect to be white? How many would we expect
to be black?

About 72% of the population is white, so we would expect about 72% of the jurors to be white:
0.72× 275 = 198.

Similarly, we would expect about 7% of the jurors to be black, which would correspond to about
0.07× 275 = 19.25 black jurors.

GUIDED PRACTICE 6.23

Twelve percent of the population is Hispanic and 9% represent other races. How many of the 275
jurors would we expect to be Hispanic or from another race? Answers can be found in Figure 6.6.

The sample proportion represented from each race among the 275 jurors was not a precise
match for any ethnic group. While some sampling variation is expected, we would expect the
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Race White Black Hispanic Other Total
Observed data 205 26 25 19 275
Expected counts 198 19.25 33 24.75 275

Figure 6.6: Actual and expected make-up of the jurors.

sample proportions to be fairly similar to the population proportions if there is no bias on juries.
We need to test whether the differences are strong enough to provide convincing evidence that the
jurors are not a random sample. These ideas can be organized into hypotheses:

H0: The jurors are a random sample, i.e. there is no racial bias in who serves on a jury, and the
observed counts reflect natural sampling fluctuation.

HA: The jurors are not randomly sampled, i.e. there is racial bias in juror selection.

To evaluate these hypotheses, we quantify how different the observed counts are from the expected
counts. Strong evidence for the alternative hypothesis would come in the form of unusually large
deviations in the groups from what would be expected based on sampling variation alone.

6.3.2 The chi-square test statistic

In previous hypothesis tests, we constructed a test statistic of the following form:

point estimate− null value

SE of point estimate

This construction was based on (1) identifying the difference between a point estimate and an
expected value if the null hypothesis was true, and (2) standardizing that difference using the
standard error of the point estimate. These two ideas will help in the construction of an appropriate
test statistic for count data.

Our strategy will be to first compute the difference between the observed counts and the counts
we would expect if the null hypothesis was true, then we will standardize the difference:

Z1 =
observed white count− null white count

SE of observed white count

The standard error for the point estimate of the count in binned data is the square root of the count
under the null.32 Therefore:

Z1 =
205− 198√

198
= 0.50

The fraction is very similar to previous test statistics: first compute a difference, then standardize
it. These computations should also be completed for the black, Hispanic, and other groups:

Black Hispanic Other

Z2 =
26− 19.25√

19.25
= 1.54 Z3 =

25− 33√
33

= −1.39 Z4 =
19− 24.75√

24.75
= −1.16

We would like to use a single test statistic to determine if these four standardized differences are
irregularly far from zero. That is, Z1, Z2, Z3, and Z4 must be combined somehow to help determine
if they – as a group – tend to be unusually far from zero. A first thought might be to take the
absolute value of these four standardized differences and add them up:

|Z1|+ |Z2|+ |Z3|+ |Z4| = 4.58

32Using some of the rules learned in earlier chapters, we might think that the standard error would be np(1− p),
where n is the sample size and p is the proportion in the population. This would be correct if we were looking only
at one count. However, we are computing many standardized differences and adding them together. It can be shown
– though not here – that the square root of the count is a better way to standardize the count differences.
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Indeed, this does give one number summarizing how far the actual counts are from what was ex-
pected. However, it is more common to add the squared values:

Z2
1 + Z2

2 + Z2
3 + Z2

4 = 5.89

Squaring each standardized difference before adding them together does two things:

• Any standardized difference that is squared will now be positive.

• Differences that already look unusual – e.g. a standardized difference of 2.5 – will become
much larger after being squared.

The test statistic X2, which is the sum of the Z2 values, is generally used for these reasons. We can
also write an equation for X2 using the observed counts and null counts:

X2 =
(observed count1 − null count1)2

null count1

+ · · ·+ (observed count4 − null count4)2

null count4

The final number X2 summarizes how strongly the observed counts tend to deviate from the null
counts. In Section 6.3.4, we will see that if the null hypothesis is true, then X2 follows a new
distribution called a chi-square distribution. Using this distribution, we will be able to obtain a
p-value to evaluate the hypotheses.

6.3.3 The chi-square distribution and finding areas

The chi-square distribution is sometimes used to characterize data sets and statistics that
are always positive and typically right skewed. Recall a normal distribution had two parameters –
mean and standard deviation – that could be used to describe its exact characteristics. The chi-
square distribution has just one parameter called degrees of freedom (df), which influences the
shape, center, and spread of the distribution.

GUIDED PRACTICE 6.24

Figure 6.7 shows three chi-square distributions.
(a) How does the center of the distribution change when the degrees of freedom is larger?
(b) What about the variability (spread)?
(c) How does the shape change?33

0 5 10 15 20 25

Degrees of Freedom

2
4
9

Figure 6.7: Three chi-square distributions with varying degrees of freedom.

33(a) The center becomes larger. If took a careful look, we could see that the mean of each distribution is equal
to the distribution’s degrees of freedom. (b) The variability increases as the degrees of freedom increases. (c) The
distribution is very strongly skewed for df = 2, and then the distributions become more symmetric for the larger
degrees of freedom df = 4 and df = 9. We would see this trend continue if we examined distributions with even more
larger degrees of freedom.
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Figure 6.7 and Guided Practice 6.24 demonstrate three general properties of chi-square distri-
butions as the degrees of freedom increases: the distribution becomes more symmetric, the center
moves to the right, and the variability inflates.

Our principal interest in the chi-square distribution is the calculation of p-values, which (as
we have seen before) is related to finding the relevant area in the tail of a distribution. The most
common ways to do this are using computer software, using a graphing calculator, or using a table.
For folks wanting to use the table option, we provide an outline of how to read the chi-square table
in Appendix C.3, which is also where you may find the table. For the examples below, use your
preferred approach to confirm you get the same answers.

EXAMPLE 6.25

Figure 6.8(a) shows a chi-square distribution with 3 degrees of freedom and an upper shaded tail
starting at 6.25. Find the shaded area.

Using statistical software or a graphing calculator, we can find that the upper tail area for a chi-
square distribution with 3 degrees of freedom (df) and a cutoff of 6.25 is 0.1001. That is, the shaded
upper tail of Figure 6.8(a) has area 0.1.

EXAMPLE 6.26

Figure 6.8(b) shows the upper tail of a chi-square distribution with 2 degrees of freedom. The bound
for this upper tail is at 4.3. Find the tail area.

Using software, we can find that the tail area shaded in Figure 6.8(b) to be 0.1165. If using a table,
we would only be able to find a range of values for the tail area: between 0.1 and 0.2.

EXAMPLE 6.27

Figure 6.8(c) shows an upper tail for a chi-square distribution with 5 degrees of freedom and a cutoff
of 5.1. Find the tail area.

Using software, we would obtain a tail area of 0.4038. If using the table in Appendix C.3, we would
have identified that the tail area is larger than 0.3 but not be able to give the precise value.

GUIDED PRACTICE 6.28

Figure 6.8(d) shows a cutoff of 11.7 on a chi-square distribution with 7 degrees of freedom. Find the
area of the upper tail.34

GUIDED PRACTICE 6.29

Figure 6.8(e) shows a cutoff of 10 on a chi-square distribution with 4 degrees of freedom. Find the
area of the upper tail.35

GUIDED PRACTICE 6.30

Figure 6.8(f) shows a cutoff of 9.21 with a chi-square distribution with 3 df. Find the area of the
upper tail.36

34 The area is 0.1109. If using a table, we would identify that it falls between 0.1 and 0.2.
35Precise value: 0.0404. If using the table: between 0.02 and 0.05.
36Precise value: 0.0266. If using the table: between 0.02 and 0.05.
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Figure 6.8: (a) Chi-square distribution with 3 degrees of freedom, area above
6.25 shaded. (b) 2 degrees of freedom, area above 4.3 shaded. (c) 5 degrees of
freedom, area above 5.1 shaded. (d) 7 degrees of freedom, area above 11.7 shaded.
(e) 4 degrees of freedom, area above 10 shaded. (f) 3 degrees of freedom, area
above 9.21 shaded.



234 CHAPTER 6. INFERENCE FOR CATEGORICAL DATA

6.3.4 Finding a p-value for a chi-square distribution

In Section 6.3.2, we identified a new test statistic (X2) within the context of assessing whether
there was evidence of racial bias in how jurors were sampled. The null hypothesis represented the
claim that jurors were randomly sampled and there was no racial bias. The alternative hypothesis
was that there was racial bias in how the jurors were sampled.

We determined that a large X2 value would suggest strong evidence favoring the alternative
hypothesis: that there was racial bias. However, we could not quantify what the chance was of
observing such a large test statistic (X2 = 5.89) if the null hypothesis actually was true. This is
where the chi-square distribution becomes useful. If the null hypothesis was true and there was no
racial bias, then X2 would follow a chi-square distribution, with three degrees of freedom in this
case. Under certain conditions, the statistic X2 follows a chi-square distribution with k − 1 degrees
of freedom, where k is the number of bins.

EXAMPLE 6.31

How many categories were there in the juror example? How many degrees of freedom should be
associated with the chi-square distribution used for X2?

In the jurors example, there were k = 4 categories: white, black, Hispanic, and other. According
to the rule above, the test statistic X2 should then follow a chi-square distribution with k − 1 = 3
degrees of freedom if H0 is true.

Just like we checked sample size conditions to use a normal distribution in earlier sections, we
must also check a sample size condition to safely apply the chi-square distribution for X2. Each
expected count must be at least 5. In the juror example, the expected counts were 198, 19.25, 33,
and 24.75, all easily above 5, so we can apply the chi-square model to the test statistic, X2 = 5.89.

EXAMPLE 6.32

If the null hypothesis is true, the test statistic X2 = 5.89 would be closely associated with a chi-
square distribution with three degrees of freedom. Using this distribution and test statistic, identify
the p-value.

The chi-square distribution and p-value are shown in Figure 6.9. Because larger chi-square values
correspond to stronger evidence against the null hypothesis, we shade the upper tail to represent
the p-value. Using statistical software (or the table in Appendix C.3), we can determine that the
area is 0.1171. Generally we do not reject the null hypothesis with such a large p-value. In other
words, the data do not provide convincing evidence of racial bias in the juror selection.

0 5 10 15

Figure 6.9: The p-value for the juror hypothesis test is shaded in the chi-square
distribution with df = 3.
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CHI-SQUARE TEST FOR ONE-WAY TABLE

Suppose we are to evaluate whether there is convincing evidence that a set of observed counts
O1, O2, ..., Ok in k categories are unusually different from what might be expected under a null
hypothesis. Call the expected counts that are based on the null hypothesis E1, E2, ..., Ek. If
each expected count is at least 5 and the null hypothesis is true, then the test statistic below
follows a chi-square distribution with k − 1 degrees of freedom:

X2 =
(O1 − E1)2

E1
+

(O2 − E2)2

E2
+ · · ·+ (Ok − Ek)2

Ek

The p-value for this test statistic is found by looking at the upper tail of this chi-square distri-
bution. We consider the upper tail because larger values of X2 would provide greater evidence
against the null hypothesis.

CONDITIONS FOR THE CHI-SQUARE TEST

There are two conditions that must be checked before performing a chi-square test:

Independence. Each case that contributes a count to the table must be independent of all
the other cases in the table.

Sample size / distribution. Each particular scenario (i.e. cell count) must have at least
5 expected cases.

Failing to check conditions may affect the test’s error rates.

When examining a table with just two bins, pick a single bin and use the one-proportion
methods introduced in Section 6.1.
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6.3.5 Evaluating goodness of fit for a distribution

Section 4.2 would be useful background reading for this example, but it is not a prerequisite.
We can apply the chi-square testing framework to the second problem in this section: evaluating

whether a certain statistical model fits a data set. Daily stock returns from the S&P500 for 10 can
be used to assess whether stock activity each day is independent of the stock’s behavior on previous
days. This sounds like a very complex question, and it is, but a chi-square test can be used to study
the problem. We will label each day as Up or Down (D) depending on whether the market was up
or down that day. For example, consider the following changes in price, their new labels of up and
down, and then the number of days that must be observed before each Up day:

Change in price 2.52 -1.46 0.51 -4.07 3.36 1.10 -5.46 -1.03 -2.99 1.71
Outcome Up D Up D Up Up D D D Up
Days to Up 1 - 2 - 2 1 - - - 4

If the days really are independent, then the number of days until a positive trading day should follow
a geometric distribution. The geometric distribution describes the probability of waiting for the kth

trial to observe the first success. Here each up day (Up) represents a success, and down (D) days
represent failures. In the data above, it took only one day until the market was up, so the first wait
time was 1 day. It took two more days before we observed our next Up trading day, and two more
for the third Up day. We would like to determine if these counts (1, 2, 2, 1, 4, and so on) follow
the geometric distribution. Figure 6.10 shows the number of waiting days for a positive trading day
during 10 years for the S&P500.

Days 1 2 3 4 5 6 7+ Total
Observed 717 369 155 69 28 14 10 1362

Figure 6.10: Observed distribution of the waiting time until a positive trading day
for the S&P500.

We consider how many days one must wait until observing an Up day on the S&P500 stock
index. If the stock activity was independent from one day to the next and the probability of a
positive trading day was constant, then we would expect this waiting time to follow a geometric
distribution. We can organize this into a hypothesis framework:

H0: The stock market being up or down on a given day is independent from all other days. We
will consider the number of days that pass until an Up day is observed. Under this hypothesis,
the number of days until an Up day should follow a geometric distribution.

HA: The stock market being up or down on a given day is not independent from all other days.
Since we know the number of days until an Up day would follow a geometric distribution under
the null, we look for deviations from the geometric distribution, which would support the
alternative hypothesis.

There are important implications in our result for stock traders: if information from past trading
days is useful in telling what will happen today, that information may provide an advantage over
other traders.

We consider data for the S&P500 and summarize the waiting times in Figure 6.11 and Fig-
ure 6.12. The S&P500 was positive on 54.5% of those days.

Because applying the chi-square framework requires expected counts to be at least 5, we have
binned together all the cases where the waiting time was at least 7 days to ensure each expected
count is well above this minimum. The actual data, shown in the Observed row in Figure 6.11, can
be compared to the expected counts from the Geometric Model row. The method for computing
expected counts is discussed in Figure 6.11. In general, the expected counts are determined by
(1) identifying the null proportion associated with each bin, then (2) multiplying each null proportion
by the total count to obtain the expected counts. That is, this strategy identifies what proportion
of the total count we would expect to be in each bin.
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Days 1 2 3 4 5 6 7+ Total
Observed 717 369 155 69 28 14 10 1362
Geometric Model 743 338 154 70 32 14 12 1362

Figure 6.11: Distribution of the waiting time until a positive trading day. The
expected counts based on the geometric model are shown in the last row. To
find each expected count, we identify the probability of waiting D days based on
the geometric model (P (D) = (1 − 0.545)D−1(0.545)) and multiply by the total
number of streaks, 1362. For example, waiting for three days occurs under the
geometric model about 0.4552× 0.545 = 11.28% of the time, which corresponds to
0.1128× 1362 = 154 streaks.
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Figure 6.12: Side-by-side bar plot of the observed and expected counts for each
waiting time.
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EXAMPLE 6.33

Do you notice any unusually large deviations in the graph? Can you tell if these deviations are due
to chance just by looking?

It is not obvious whether differences in the observed counts and the expected counts from the geo-
metric distribution are significantly different. That is, it is not clear whether these deviations might
be due to chance or whether they are so strong that the data provide convincing evidence against
the null hypothesis. However, we can perform a chi-square test using the counts in Figure 6.11.

GUIDED PRACTICE 6.34

Figure 6.11 provides a set of count data for waiting times (O1 = 717, O2 = 369, ...) and expected
counts under the geometric distribution (E1 = 743, E2 = 338, ...). Compute the chi-square test
statistic, X2.37

GUIDED PRACTICE 6.35

Because the expected counts are all at least 5, we can safely apply the chi-square distribution to
X2. However, how many degrees of freedom should we use?38

EXAMPLE 6.36

If the observed counts follow the geometric model, then the chi-square test statistic X2 = 4.61 would
closely follow a chi-square distribution with df = 6. Using this information, compute a p-value.

Figure 6.13 shows the chi-square distribution, cutoff, and the shaded p-value. Using software, we
can find the p-value: 0.5951. Ultimately, we do not have sufficient evidence to reject the notion that
the wait times follow a geometric distribution for the last 10 years of data for the S&P500, i.e. we
cannot reject the notion that trading days are independent.

0 5 10 15 20 25

Area representing
the p−value

Figure 6.13: Chi-square distribution with 6 degrees of freedom. The p-value for
the stock analysis is shaded.

EXAMPLE 6.37

In Example 6.36, we did not reject the null hypothesis that the trading days are independent during
the last 10 of data. Why is this so important?

It may be tempting to think the market is “due” for an Up day if there have been several consecutive
days where it has been down. However, we haven’t found strong evidence that there’s any such
property where the market is “due” for a correction. At the very least, the analysis suggests any
dependence between days is very weak.

37X2 =
(717−743)2

743
+

(369−338)2

338
+ · · ·+ (10−12)2

12
= 4.61

38There are k = 7 groups, so we use df = k − 1 = 6.
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