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7.5 Comparing many means with ANOVA

Sometimes we want to compare means across many groups. We might initially think to do pairwise
comparisons. For example, if there were three groups, we might be tempted to compare the first
mean with the second, then with the third, and then finally compare the second and third means
for a total of three comparisons. However, this strategy can be treacherous. If we have many groups
and do many comparisons, it is likely that we will eventually find a difference just by chance, even
if there is no difference in the populations. Instead, we should apply a holistic test to check whether
there is evidence that at least one pair groups are in fact different, and this is where ANOVA saves
the day.

7.5.1 Core ideas of ANOVA

In this section, we will learn a new method called analysis of variance (ANOVA) and a
new test statistic called F . ANOVA uses a single hypothesis test to check whether the means across
many groups are equal:

H0: The mean outcome is the same across all groups. In statistical notation, µ1 = µ2 = · · · = µk
where µi represents the mean of the outcome for observations in category i.

HA: At least one mean is different.

Generally we must check three conditions on the data before performing ANOVA:

• the observations are independent within and across groups,

• the data within each group are nearly normal, and

• the variability across the groups is about equal.

When these three conditions are met, we may perform an ANOVA to determine whether the data
provide strong evidence against the null hypothesis that all the µi are equal.

EXAMPLE 7.40

College departments commonly run multiple lectures of the same introductory course each semester
because of high demand. Consider a statistics department that runs three lectures of an introductory
statistics course. We might like to determine whether there are statistically significant differences in
first exam scores in these three classes (A, B, and C). Describe appropriate hypotheses to determine
whether there are any differences between the three classes.

The hypotheses may be written in the following form:

H0: The average score is identical in all lectures. Any observed difference is due to chance. Nota-
tionally, we write µA = µB = µC .

HA: The average score varies by class. We would reject the null hypothesis in favor of the alternative
hypothesis if there were larger differences among the class averages than what we might expect
from chance alone.

Strong evidence favoring the alternative hypothesis in ANOVA is described by unusually large
differences among the group means. We will soon learn that assessing the variability of the group
means relative to the variability among individual observations within each group is key to ANOVA’s
success.
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EXAMPLE 7.41

Examine Figure 7.19. Compare groups I, II, and III. Can you visually determine if the differences in
the group centers is due to chance or not? Now compare groups IV, V, and VI. Do these differences
appear to be due to chance?

Any real difference in the means of groups I, II, and III is difficult to discern, because the data within
each group are very volatile relative to any differences in the average outcome. On the other hand, it
appears there are differences in the centers of groups IV, V, and VI. For instance, group V appears
to have a higher mean than that of the other two groups. Investigating groups IV, V, and VI, we
see the differences in the groups’ centers are noticeable because those differences are large relative
to the variability in the individual observations within each group.
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Figure 7.19: Side-by-side dot plot for the outcomes for six groups.

7.5.2 Is batting performance related to player position in MLB?

We would like to discern whether there are real differences between the batting performance of
baseball players according to their position: outfielder (OF), infielder (IF), and catcher (C). We will
use a data set called bat18, which includes batting records of 429 Major League Baseball (MLB)
players from the 2018 season who had at least 100 at bats. Six of the 429 cases represented in
bat18 are shown in Figure 7.20, and descriptions for each variable are provided in Figure 7.21. The
measure we will use for the player batting performance (the outcome variable) is on-base percentage
(OBP). The on-base percentage roughly represents the fraction of the time a player successfully gets
on base or hits a home run.

name team position AB H HR RBI AVG OBP
1 Abreu, J CWS IF 499 132 22 78 0.265 0.325
2 Acuna Jr., R ATL OF 433 127 26 64 0.293 0.366
3 Adames, W TB IF 288 80 10 34 0.278 0.348
...

...
...

...
...

...
...

...
427 Zimmerman, R WSH IF 288 76 13 51 0.264 0.337
428 Zobrist, B CHC IF 455 139 9 58 0.305 0.378
429 Zunino, M SEA C 373 75 20 44 0.201 0.259

Figure 7.20: Six cases from the bat18 data matrix.
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variable description

name Player name
team The abbreviated name of the player’s team
position The player’s primary field position (OF, IF, C)
AB Number of opportunities at bat
H Number of hits
HR Number of home runs
RBI Number of runs batted in
AVG Batting average, which is equal to H/AB
OBP On-base percentage, which is roughly equal to the fraction

of times a player gets on base or hits a home run

Figure 7.21: Variables and their descriptions for the bat18 data set.

GUIDED PRACTICE 7.42

The null hypothesis under consideration is the following: µOF = µIF = µC. Write the null and
corresponding alternative hypotheses in plain language.30

EXAMPLE 7.43

The player positions have been divided into three groups: outfield (OF), infield (IF), and catcher (C).
What would be an appropriate point estimate of the on-base percentage by outfielders, µOF?

A good estimate of the on-base percentage by outfielders would be the sample average of OBP for
just those players whose position is outfield: x̄OF = 0.320.

Figure 7.22 provides summary statistics for each group. A side-by-side box plot for the on-
base percentage is shown in Figure 7.23. Notice that the variability appears to be approximately
constant across groups; nearly constant variance across groups is an important assumption that
must be satisfied before we consider the ANOVA approach.

OF IF C

Sample size (ni) 160 205 64
Sample mean (x̄i) 0.320 0.318 0.302
Sample SD (si) 0.043 0.038 0.038

Figure 7.22: Summary statistics of on-base percentage, split by player position.
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Figure 7.23: Side-by-side box plot of the on-base percentage for 429 players across
three groups. With over a hundred players in both the infield and outfield groups,
the apparent outliers are not a concern.

30H0: The average on-base percentage is equal across the three positions. HA: The average on-base percentage
varies across some (or all) groups.
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EXAMPLE 7.44

The largest difference between the sample means is between the catcher and the outfielder positions.
Consider again the original hypotheses:

H0: µOF = µIF = µC

HA: The average on-base percentage (µi) varies across some (or all) groups.

Why might it be inappropriate to run the test by simply estimating whether the difference of µC
and µOF is statistically significant at a 0.05 significance level?

The primary issue here is that we are inspecting the data before picking the groups that will be
compared. It is inappropriate to examine all data by eye (informal testing) and only afterwards
decide which parts to formally test. This is called data snooping or data fishing. Naturally,
we would pick the groups with the large differences for the formal test, and this would leading to
an inflation in the Type 1 Error rate. To understand this better, let’s consider a slightly different
problem.

Suppose we are to measure the aptitude for students in 20 classes in a large elementary school at
the beginning of the year. In this school, all students are randomly assigned to classrooms, so any
differences we observe between the classes at the start of the year are completely due to chance.
However, with so many groups, we will probably observe a few groups that look rather different from
each other. If we select only these classes that look so different and then perform a formal test, we
will probably make the wrong conclusion that the assignment wasn’t random. While we might only
formally test differences for a few pairs of classes, we informally evaluated the other classes by eye
before choosing the most extreme cases for a comparison.

For additional information on the ideas expressed in Example 7.44, we recommend reading
about the prosecutor’s fallacy.31

In the next section we will learn how to use the F statistic and ANOVA to test whether observed
differences in sample means could have happened just by chance even if there was no difference in
the respective population means.

31See, for example, statmodeling.stat.columbia.edu/2007/05/18/the prosecutors.

http://www.openintro.org/redirect.php?go=textbook-prosecutors_fallacy&referrer=os4_pdf
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7.5.3 Analysis of variance (ANOVA) and the FFF -test

The method of analysis of variance in this context focuses on answering one question: is the
variability in the sample means so large that it seems unlikely to be from chance alone? This question
is different from earlier testing procedures since we will simultaneously consider many groups, and
evaluate whether their sample means differ more than we would expect from natural variation.
We call this variability the mean square between groups (MSG), and it has an associated
degrees of freedom, dfG = k − 1 when there are k groups. The MSG can be thought of as a scaled
variance formula for means. If the null hypothesis is true, any variation in the sample means is due
to chance and shouldn’t be too large. Details of MSG calculations are provided in the footnote.32

However, we typically use software for these computations.
The mean square between the groups is, on its own, quite useless in a hypothesis test. We need

a benchmark value for how much variability should be expected among the sample means if the
null hypothesis is true. To this end, we compute a pooled variance estimate, often abbreviated as
the mean square error (MSE), which has an associated degrees of freedom value dfE = n − k.
It is helpful to think of MSE as a measure of the variability within the groups. Details of the
computations of the MSE and a link to an extra online section for ANOVA calculations are provided
in the footnote33 for interested readers.

When the null hypothesis is true, any differences among the sample means are only due to
chance, and the MSG and MSE should be about equal. As a test statistic for ANOVA, we examine
the fraction of MSG and MSE:

F =
MSG

MSE

The MSG represents a measure of the between-group variability, and MSE measures the variability
within each of the groups.

GUIDED PRACTICE 7.45

For the baseball data, MSG = 0.00803 and MSE = 0.00158. Identify the degrees of freedom
associated with MSG and MSE and verify the F statistic is approximately 5.077.34

We can use the F statistic to evaluate the hypotheses in what is called an FFF -test. A p-value
can be computed from the F statistic using an F distribution, which has two associated parameters:
df1 and df2. For the F statistic in ANOVA, df1 = dfG and df2 = dfE . An F distribution with 2 and
426 degrees of freedom, corresponding to the F statistic for the baseball hypothesis test, is shown
in Figure 7.24.

32Let x̄ represent the mean of outcomes across all groups. Then the mean square between groups is computed as

MSG =
1

dfG
SSG =

1

k − 1

k∑
i=1

ni (x̄i − x̄)2

where SSG is called the sum of squares between groups and ni is the sample size of group i.
33Let x̄ represent the mean of outcomes across all groups. Then the sum of squares total (SST ) is computed as

SST =
n∑
i=1

(xi − x̄)2

where the sum is over all observations in the data set. Then we compute the sum of squared errors (SSE) in one
of two equivalent ways:

SSE = SST − SSG

= (n1 − 1)s21 + (n2 − 1)s22 + · · ·+ (nk − 1)s2k

where s2i is the sample variance (square of the standard deviation) of the residuals in group i. Then the MSE is the

standardized form of SSE: MSE = 1
dfE

SSE.

For additional details on ANOVA calculations, see www.openintro.org/d?file=stat extra anova calculations
34There are k = 3 groups, so dfG = k − 1 = 2. There are n = n1 + n2 + n3 = 429 total observations, so dfE =

n−k = 426. Then the F statistic is computed as the ratio of MSG and MSE: F = MSG
MSE

= 0.00803
0.00158

= 5.082 ≈ 5.077.
(F = 5.077 was computed by using values for MSG and MSE that were not rounded.)

http://www.openintro.org/redirect.php?go=stat_extra_anova_calculations&referrer=os4_pdf
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Figure 7.24: An F distribution with df1 = 2 and df2 = 426.

The larger the observed variability in the sample means (MSG) relative to the within-group
observations (MSE), the larger F will be and the stronger the evidence against the null hypothesis.
Because larger values of F represent stronger evidence against the null hypothesis, we use the upper
tail of the distribution to compute a p-value.

THE FFF STATISTIC AND THE FFF -TEST

Analysis of variance (ANOVA) is used to test whether the mean outcome differs across 2 or
more groups. ANOVA uses a test statistic F , which represents a standardized ratio of variability
in the sample means relative to the variability within the groups. If H0 is true and the model
conditions are satisfied, the statistic F follows an F distribution with parameters df1 = k − 1
and df2 = n− k. The upper tail of the F distribution is used to represent the p-value.

EXAMPLE 7.46

The p-value corresponding to the shaded area in Figure 7.24 is equal to about 0.0066. Does this
provide strong evidence against the null hypothesis?

The p-value is smaller than 0.05, indicating the evidence is strong enough to reject the null hypothesis
at a significance level of 0.05. That is, the data provide strong evidence that the average on-base
percentage varies by player’s primary field position.

7.5.4 Reading an ANOVA table from software

The calculations required to perform an ANOVA by hand are tedious and prone to human
error. For these reasons, it is common to use statistical software to calculate the F statistic and
p-value.

An ANOVA can be summarized in a table very similar to that of a regression summary, which
we will see in Chapters 8 and 9. Figure 7.25 shows an ANOVA summary to test whether the mean of
on-base percentage varies by player positions in the MLB. Many of these values should look familiar;
in particular, the F -test statistic and p-value can be retrieved from the last two columns.

Df Sum Sq Mean Sq F value Pr(>F)
position 2 0.0161 0.0080 5.0766 0.0066
Residuals 426 0.6740 0.0016

spooled = 0.040 on df = 423

Figure 7.25: ANOVA summary for testing whether the average on-base percentage
differs across player positions.



7.5. COMPARING MANY MEANS WITH ANOVA 291

7.5.5 Graphical diagnostics for an ANOVA analysis

There are three conditions we must check for an ANOVA analysis: all observations must be
independent, the data in each group must be nearly normal, and the variance within each group
must be approximately equal.

Independence. If the data are a simple random sample, this condition is satisfied. For processes
and experiments, carefully consider whether the data may be independent (e.g. no pairing).
For example, in the MLB data, the data were not sampled. However, there are not obvious
reasons why independence would not hold for most or all observations.

Approximately normal. As with one- and two-sample testing for means, the normality assump-
tion is especially important when the sample size is quite small when it is ironically difficult
to check for non-normality. A histogram of the observations from each group is shown in Fig-
ure 7.26. Since each of the groups we’re considering have relatively large sample sizes, what
we’re looking for are major outliers. None are apparent, so this conditions is reasonably met.
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Figure 7.26: Histograms of OBP for each field position.

Constant variance. The last assumption is that the variance in the groups is about equal from
one group to the next. This assumption can be checked by examining a side-by-side box plot
of the outcomes across the groups, as in Figure 7.23 on page 287. In this case, the variability
is similar in the four groups but not identical. We see in Table 7.22 on page 287 that the
standard deviation doesn’t vary much from one group to the next.

DIAGNOSTICS FOR AN ANOVA ANALYSIS

Independence is always important to an ANOVA analysis. The normality condition is very
important when the sample sizes for each group are relatively small. The constant variance
condition is especially important when the sample sizes differ between groups.
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7.5.6 Multiple comparisons and controlling Type 1 Error rate

When we reject the null hypothesis in an ANOVA analysis, we might wonder, which of these
groups have different means? To answer this question, we compare the means of each possible pair
of groups. For instance, if there are three groups and there is strong evidence that there are some
differences in the group means, there are three comparisons to make: group 1 to group 2, group 1
to group 3, and group 2 to group 3. These comparisons can be accomplished using a two-sample
t-test, but we use a modified significance level and a pooled estimate of the standard deviation across
groups. Usually this pooled standard deviation can be found in the ANOVA table, e.g. along the
bottom of Figure 7.25.

EXAMPLE 7.47

Example 7.40 on page 285 discussed three statistics lectures, all taught during the same semester.
Figure 7.27 shows summary statistics for these three courses, and a side-by-side box plot of the data
is shown in Figure 7.28. We would like to conduct an ANOVA for these data. Do you see any
deviations from the three conditions for ANOVA?

In this case (like many others) it is difficult to check independence in a rigorous way. Instead,
the best we can do is use common sense to consider reasons the assumption of independence may
not hold. For instance, the independence assumption may not be reasonable if there is a star
teaching assistant that only half of the students may access; such a scenario would divide a class
into two subgroups. No such situations were evident for these particular data, and we believe that
independence is acceptable.

The distributions in the side-by-side box plot appear to be roughly symmetric and show no noticeable
outliers.

The box plots show approximately equal variability, which can be verified in Figure 7.27, supporting
the constant variance assumption.

Class i A B C
ni 58 55 51
x̄i 75.1 72.0 78.9
si 13.9 13.8 13.1

Figure 7.27: Summary statistics for the first midterm scores in three different
lectures of the same course.
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Figure 7.28: Side-by-side box plot for the first midterm scores in three different
lectures of the same course.
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GUIDED PRACTICE 7.48

ANOVA was conducted for the midterm data, and summary results are shown in Figure 7.29. What
should we conclude?35

Df Sum Sq Mean Sq F value Pr(>F)
lecture 2 1290.11 645.06 3.48 0.0330
Residuals 161 29810.13 185.16

spooled = 13.61 on df = 161

Figure 7.29: ANOVA summary table for the midterm data.

There is strong evidence that the different means in each of the three classes is not simply due
to chance. We might wonder, which of the classes are actually different? As discussed in earlier
chapters, a two-sample t-test could be used to test for differences in each possible pair of groups.
However, one pitfall was discussed in Example 7.44 on page 288: when we run so many tests, the
Type 1 Error rate increases. This issue is resolved by using a modified significance level.

MULTIPLE COMPARISONS AND THE BONFERRONI CORRECTION FOR ααα

The scenario of testing many pairs of groups is called multiple comparisons. The Bonferroni
correction suggests that a more stringent significance level is more appropriate for these tests:

α? = α/K

where K is the number of comparisons being considered (formally or informally). If there are

k groups, then usually all possible pairs are compared and K = k(k−1)
2 .

EXAMPLE 7.49

In Guided Practice 7.48, you found strong evidence of differences in the average midterm grades
between the three lectures. Complete the three possible pairwise comparisons using the Bonferroni
correction and report any differences.

We use a modified significance level of α? = 0.05/3 = 0.0167. Additionally, we use the pooled
estimate of the standard deviation: spooled = 13.61 on df = 161, which is provided in the ANOVA
summary table.

Lecture A versus Lecture B: The estimated difference and standard error are, respectively,

x̄A − x̄B = 75.1− 72 = 3.1 SE =

√
13.612

58
+

13.612

55
= 2.56

(See Section 7.3.4 on page 273 for additional details.) This results in a T-score of 1.21 on df = 161
(we use the df associated with spooled). Statistical software was used to precisely identify the two-
sided p-value since the modified significance level of 0.0167 is not found in the t-table. The p-value
(0.228) is larger than α∗ = 0.0167, so there is not strong evidence of a difference in the means of
lectures A and B.

Lecture A versus Lecture C: The estimated difference and standard error are 3.8 and 2.61, respec-
tively. This results in a T score of 1.46 on df = 161 and a two-sided p-value of 0.1462. This p-value
is larger than α∗, so there is not strong evidence of a difference in the means of lectures A and C.

Lecture B versus Lecture C: The estimated difference and standard error are 6.9 and 2.65, respec-
tively. This results in a T score of 2.60 on df = 161 and a two-sided p-value of 0.0102. This p-value
is smaller than α∗. Here we find strong evidence of a difference in the means of lectures B and C.

35The p-value of the test is 0.0330, less than the default significance level of 0.05. Therefore, we reject the null
hypothesis and conclude that the difference in the average midterm scores are not due to chance.
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We might summarize the findings of the analysis from Example 7.49 using the following notation:

µA
?
= µB µA

?
= µC µB 6= µC

The midterm mean in lecture A is not statistically distinguishable from those of lectures B or C.
However, there is strong evidence that lectures B and C are different. In the first two pairwise
comparisons, we did not have sufficient evidence to reject the null hypothesis. Recall that failing to
reject H0 does not imply H0 is true.

REJECTH0H0H0 WITH ANOVA BUT FIND NO DIFFERENCES IN GROUP MEANS

It is possible to reject the null hypothesis using ANOVA and then to not subsequently identify
differences in the pairwise comparisons. However, this does not invalidate the ANOVA conclu-
sion. It only means we have not been able to successfully identify which specific groups differ
in their means.

The ANOVA procedure examines the big picture: it considers all groups simultaneously to
decipher whether there is evidence that some difference exists. Even if the test indicates that there
is strong evidence of differences in group means, identifying with high confidence a specific difference
as statistically significant is more difficult.

Consider the following analogy: we observe a Wall Street firm that makes large quantities of
money based on predicting mergers. Mergers are generally difficult to predict, and if the prediction
success rate is extremely high, that may be considered sufficiently strong evidence to warrant inves-
tigation by the Securities and Exchange Commission (SEC). While the SEC may be quite certain
that there is insider trading taking place at the firm, the evidence against any single trader may not
be very strong. It is only when the SEC considers all the data that they identify the pattern. This
is effectively the strategy of ANOVA: stand back and consider all the groups simultaneously.
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