

Practice Exercises: Lesson 3.1 Solutions

Diez, D. M., Çetinkaya-Rundel, M., Barr, C. D. (2019). OpenIntro Statistics (4th ed.). OpenIntro. https://www.openintro.org/book/os/ CC BY-SA 3.0

STAT 1201 Introduction to Probability and Statistics

ONLINE AND DISTANCE EDUCATION

4.31 (a) Poisson with $\lambda = 75$. (b) $\mu = \lambda = 75$, $\sigma = \sqrt{\lambda} = 8.66.$ (c) Z = -1.73. Since 60 is within 2 standard deviations of the mean, it would not generally be considered unusual. Note that we often use this rule of thumb even when the normal model does not apply. (d) Using Poisson with $\lambda = 75$: 0.0402.

4.33 (a) $\frac{\lambda^k \times e^{-\lambda}}{k!} = \frac{6.5^5 \times e^{-6.5}}{5!} = 0.1454$

(b) The probability will come to 0.0015 + 0.0098 +0.0318 = 0.0431 (0.0430 if no rounding error).

(c) The number of people per car is 11.7/6.5 = 1.8, meaning people are coming in small clusters. That is, if one person arrives, there's a chance that they brought one or more other people in their vehicle. This means individuals (the people) are not independent, even if the car arrivals are independent, and this breaks a core assumption for the Poisson distribution. That is, the number of people visiting between 2pm and 3pm would not follow a Poisson distribution.

4.35 0 wins (-\$3): 0.1458. 1 win (-\$1): 0.3936. 2 wins (+\$1): 0.3543. 3 wins (+\$3): 0.1063.

4.37 Want to find the probability that there will be 1,786 or more enrollees. Using the normal approximation, with $\mu = np = 2,500 \times 0.7 = 1750$ and $\sigma = \sqrt{np(1-p)} = \sqrt{2,500 \times 0.7 \times 0.3} \approx 23,$ Z = 1.61, and P(Z > 1.61) = 0.0537. With a 0.5 correction: 0.0559.

4.39 (a) Z = 0.67. (b) $\mu = $1650, x = 1800 . (c) $0.67 = \frac{1800 - 1650}{\sigma} \rightarrow \sigma = \$223.88.$

4.41 (a) $(1 - 0.471)^2 \times 0.471 = 0.1318$. (b) $0.471^3 =$

5 Foundations for inference

5.1 (a) Mean. Each student reports a numerical value: a number of hours. (b) Mean. Each student reports a number, which is a percentage, and we can average over these percentages. (c) Proportion. Each student reports Yes or No, so this is a categorical variable and we use a proportion. (d) Mean. Each student reports a number, which is a percentage like in part (b). (e) Proportion. Each student reports whether or not s/he expects to get a job, so this is a categorical variable and we use a proportion.

5.3 (a) The sample is from all computer chips manufactured at the factory during the week of production. We might be tempted to generalize the population to represent all weeks, but we should exercise caution here since the rate of defects may change over time. (b) The fraction of computer chips manufactured at the factory during the week of production that had defects. (c) Estimate the parameter using the data: $\hat{p} = \frac{27}{212} = 0.127.$ (d) Standard error (or SE). (e) Compute the SE using $\hat{p} = 0.127$ in place of p: 0.1045. (c) $\mu = 1/0.471 = 2.12, \sigma = \sqrt{2.38} = 1.54.$ (d) $\mu = 1/0.30 = 3.33$, $\sigma = 2.79$. (e) When p is smaller, the event is rarer, meaning the expected number of trials before a success and the standard deviation of the waiting time are higher.

4.43 Z = 1.56, P(Z > 1.56) = 0.0594, i.e. 6%.

4.45 (a) Z = 0.73, P(Z > 0.73) = 0.2327. (b) If you are bidding on only one auction and set a low maximum bid price, someone will probably outbid you. If you set a high maximum bid price, you may win the auction but pay more than is necessary. If bidding on more than one auction, and you set your maximum bid price very low, you probably won't win any of the auctions. However, if the maximum bid price is even modestly high, you are likely to win multiple auctions. (c) An answer roughly equal to the 10th percentile would be reasonable. Regrettably, no percentile cutoff point guarantees beyond any possible event that you win at least one auction. However, you may pick a higher percentile if you want to be more sure of winning an auction. (d) Answers will vary a little but should correspond to the answer in part (c). We use the 10^{th} percentile: $Z = -1.28 \rightarrow \$69.80$.

4.47 (a) Z = 3.5, upper tail is 0.0002. (More precise value: 0.000233, but we'll use 0.0002 for the calculations here.)

(b) $0.0002 \times 2000 = 0.4$. We would expect about 0.4 10 year olds who are 76 inches or taller to show up.

(c) $\binom{2000}{0} (0.0002)^0 (1 - 0.0002)^{2000} = 0.67029.$ (d) $\frac{0.4^0 \times e^{-0.4}}{0!} = \frac{1 \times e^{-0.4}}{1} = 0.67032.$

 $SE\approx \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}=\sqrt{\frac{0.127(1-0.127)}{212}}=0.023.$ (f) The standard error is the standard deviation of $\hat{p}.$ A value of 0.10 would be about one standard error away from the observed value, which would not represent a very uncommon deviation. (Usually beyond about 2 standard errors is a good rule of thumb.) The engineer should not be surprised. (g) Recomputed standard error using p = 0.1: $SE = \sqrt{\frac{0.1(1-0.1)}{212}} = 0.021$. This value isn't very different, which is typical when the standard error is computed using relatively similar proportions (and even sometimes when those proportions are quite different!).

5.5 (a) Sampling distribution. (b) If the population proportion is in the 5-30% range, the successfailure condition would be satisfied and the sampling distribution would be symmetric. (c) We use the formula for the standard error: $SE = \sqrt{\frac{p(1-p)}{r}} =$ $\sqrt{\frac{0.08(1-0.08)}{900}} = 0.0096.$ (d) Standard error. (e) The distribution will tend to be more variable when we have fewer observations per sample.