

Practice Exercises: Lesson 4.2 Solutions

Diez, D. M., Çetinkaya-Rundel, M., Barr, C. D. (2019). OpenIntro Statistics (4th ed.). OpenIntro. https://www.openintro.org/book/os/ CC BY-SA 3.0

STAT 1201 Introduction to Probability and Statistics

ONLINE AND DISTANCE EDUCATION

6.19 (a) False. The entire confidence interval is above 0. (b) True. (c) True. (d) True. (e) False. It is simply the negated and reordered values: (-0.06,-0.02).

6.21 (a) Standard error:

$$SE = \sqrt{\frac{0.79(1 - 0.79)}{347} + \frac{0.55(1 - 0.55)}{617}} = 0.03$$

Using $z^* = 1.96$, we get:

$$0.79 - 0.55 \pm 1.96 \times 0.03 \rightarrow (0.181, 0.299)$$

We are 95% confident that the proportion of Democrats who support the plan is 18.1% to 29.9% higher than the proportion of Independents who support the plan. (b) True.

6.23 (a) College grads: 23.7%. Non-college grads: 33.7%. (b) Let p_{CG} and p_{NCG} represent the proportion of college graduates and non-college graduates who responded "do not know". $H_0: p_{CG} =$ p_{NCG} . $H_A: p_{CG} \neq p_{NCG}$. Independence is satisfied (random sample), and the success-failure condition, which we would check using the pooled proportion $(\hat{p}_{pool} = 235/827 = 0.284)$, is also satisfied. $Z = -3.18 \rightarrow \text{p-value} = 0.0014$. Since the p-value is very small, we reject H_0 . The data provide strong evidence that the proportion of college graduates who do not have an opinion on this issue is different than that of non-college graduates. The data also indicate that fewer college grads say they "do not know" than non-college grads (i.e. the data indicate the direction after we reject H_0).

6.25 (a) College grads: 35.2%. Non-college grads: 33.9%. (b) Let p_{CG} and p_{NCG} represent the proportion of college graduates and non-college grads who support offshore drilling. $H_0: p_{CG} = p_{NCG}$. $H_A: p_{CG} \neq p_{NCG}$. Independence is satisfied (random sample), and the success-failure condition, which we would check using the pooled proportion $(\hat{p}_{pool} = 286/827 = 0.346)$, is also satisfied. $Z = 0.39 \rightarrow \text{p-value} = 0.6966$. Since the p-value $> \alpha$ (0.05), we fail to reject H_0 . The data do not provide strong evidence of a difference between the proportions of college graduates and non-college graduates who support off-shore drilling in California.

6.27 Subscript $_C$ means control group. Subscript $_T$ means truck drivers. $H_0: p_C = p_T$. $H_A: p_C \neq p_T$. Independence is satisfied (random samples), as is the success-failure condition, which we would check using the pooled proportion ($\hat{p}_{pool} = 70/495 = 0.141$). $Z = -1.65 \rightarrow \text{p-value} = 0.0989$. Since the p-value is high (default to alpha = 0.05), we fail to reject H_0 . The data do not provide strong evidence that the rates of sleep deprivation are different for non-

transportation workers and truck drivers.

6.29 (a) Summary of the study:

		Virol. failure		
		Yes	No	Total
Treatment	Nevaripine	26	94	120
	Lopinavir	10	110	120
	Total	36	204	240

(b) $H_0: p_N = p_L$. There is no difference in virologic failure rates between the Nevaripine and Lopinavir groups. $H_A: p_N \neq p_L$. There is some difference in virologic failure rates between the Nevaripine and Lopinavir groups. (c) Random assignment was used, so the observations in each group are independent. If the patients in the study are representative of those in the general population (something impossible to check with the given information), then we can also confidently generalize the findings to the population. The success-failure condition, which we would check using the pooled proportion ($\hat{p}_{pool} = 36/240 = 0.15$), is satisfied. $Z = 2.89 \rightarrow \text{p-value} = 0.0039$. Since the p-value is low, we reject H_0 . There is strong evidence of a difference in virologic failure rates between the Nevaripine and Lopinavir groups. Treatment and virologic failure do not appear to be independent.

6.31 (a) False. The chi-square distribution has one parameter called degrees of freedom. (b) True. (c) True. (d) False. As the degrees of freedom increases, the shape of the chi-square distribution becomes more symmetric.

6.33 (a) H_0 : The distribution of the format of the book used by the students follows the professor's predictions. H_A : The distribution of the format of the book used by the students does not follow the professor's predictions. (b) $E_{hard\ copy} = 126 \times 0.60 = 75.6$. $E_{print} = 126 \times 0.25 = 31.5$. $E_{online} = 126 \times 0.15 =$ 18.9. (c) Independence: The sample is not random. However, if the professor has reason to believe that the proportions are stable from one term to the next and students are not affecting each other's study habits, independence is probably reasonable. Sample size: All expected counts are at least 5. (d) $\chi^2 = 2.32$, df = 2, p-value = 0.313. (e) Since the p-value is large, we fail to reject H_0 . The data do not provide strong evidence indicating the professor's predictions were statistically inaccurate.

6.35 (a) Two-way table:

	Quit		
Treatment	Yes	No	Total
Patch + support group	40	110	150
Only patch	30	120	150
Total	70	230	300

(b-i) $E_{row_1,col_1} = \frac{(row\ 1\ total) \times (col\ 1\ total)}{table\ total} = 35$. This is lower than the observed value.

(b-ii) $E_{row_2,col_2} = \frac{(row\ 2\ total)\times(col\ 2\ total)}{table\ total} = 115.$ This is lower than the observed value.

6.37 H_0 : The opinion of college grads and non-grads is not different on the topic of drilling for oil and natural gas off the coast of California. H_A : Opinions regarding the drilling for oil and natural gas off the coast of California has an association with earning a college degree.

$$E_{row\ 1,col\ 1} = 151.5$$
 $E_{row\ 1,col\ 2} = 134.5$ $E_{row\ 2,col\ 1} = 162.1$ $E_{row\ 2,col\ 2} = 143.9$ $E_{row\ 3,col\ 1} = 124.5$ $E_{row\ 3,col\ 2} = 110.5$

Independence: The samples are both random, unrelated, and from less than 10% of the population, so independence between observations is reasonable. Sample size: All expected counts are at least 5. $\chi^2 = 11.47$, $df = 2 \rightarrow \text{p-value} = 0.003$. Since the p-value $< \alpha$, we reject H_0 . There is strong evidence that there is an association between support for offshore drilling and having a college degree.

6.39 No. The samples at the beginning and at the end of the semester are not independent since the survey is conducted on the same students.

6.41 (a) H_0 : The age of Los Angeles residents is independent of shipping carrier preference variable. H_A : The age of Los Angeles residents is associated with the shipping carrier preference variable. (b) The conditions are not satisfied since some expected counts are below 5.

6.43 (a) Independence is satisfied (random sample), as is the success-failure condition (40 smokers, 160 non-smokers). The 95% CI: (0.145, 0.255). We are 95% confident that 14.5% to 25.5% of all students at this university smoke. (b) We want z^*SE to be no larger than 0.02 for a 95% confidence level. We use $z^* = 1.96$ and plug in the point estimate $\hat{p} = 0.2$ within the SE formula: $1.96\sqrt{0.2(1-0.2)/n} \leq 0.02$. The sample size n should be at least 1.537.

6.45 (a) Proportion of graduates from this university who found a job within one year of graduating. $\hat{p} = 348/400 = 0.87$. (b) This is a random sample,

so the observations are independent. Success-failure condition is satisfied: 348 successes, 52 failures, both well above 10. (c) (0.8371, 0.9029). We are 95% confident that approximately 84% to 90% of graduates from this university found a job within one year of completing their undergraduate degree. (d) 95% of such random samples would produce a 95% confidence interval that includes the true proportion of students at this university who found a job within one year of graduating from college. (e) (0.8267, 0.9133). Similar interpretation as before. (f) 99% CI is wider, as we are more confident that the true proportion is within the interval and so need to cover a wider range.

6.47 Use a chi-squared goodness of fit test. H_0 :

Each option is equally likely. H_A : Some options are

preferred over others. Total sample size: 99. Expected counts: (1/3) * 99 = 33 for each option. These are all above 5, so conditions are satisfied. df =3-1=2 and $\chi^2=\frac{(43-33)^2}{33}+\frac{(21-33)^2}{33}+\frac{(35-33)^2}{33}=$ 7.52 \rightarrow p-value = 0.023. Since the p-value is less than 5\%, we reject H_0 . The data provide convincing evidence that some options are preferred over others. **6.49** (a) $H_0: p = 0.38$. $H_A: p \neq 0.38$. Independence (random sample) and the success-failure condition are satisfied. $Z = -20.5 \rightarrow \text{p-value} \approx 0.5$ Since the p-value is very small, we reject H_0 . The data provide strong evidence that the proportion of Americans who only use their cell phones to access the internet is different than the Chinese proportion of 38%, and the data indicate that the proportion is lower in the US. (b) If in fact 38% of Americans used their cell phones as a primary access point to the internet, the probability of obtaining a random sample of 2,254 Americans where 17% or less or 59% or more use their only their cell phones to access the inter-

net would be approximately 0. (c) (0.1545, 0.1855).

We are 95% confident that approximately 15.5% to

18.6% of all Americans primarily use their cell phones

to browse the internet.

7 Inference for numerical data

7.1 (a) df = 6 - 1 = 5, $t_5^* = 2.02$ (column with two tails of 0.10, row with df = 5). (b) df = 21 - 1 = 20, $t_{20}^* = 2.53$ (column with two tails of 0.02, row with df = 20). (c) df = 28, $t_{28}^* = 2.05$. (d) df = 11, $t_{11}^* = 3.11$.

7.3 (a) 0.085, do not reject H_0 . (b) 0.003, reject H_0 . (c) 0.438, do not reject H_0 . (d) 0.042, reject H_0 .

7.5 The mean is the midpoint: $\bar{x} = 20$. Identify the margin of error: ME = 1.015, then use $t_{35}^{\star} = 2.03$ and $SE = s/\sqrt{n}$ in the formula for margin of error to identify s = 3.

7.7 (a) H_0 : $\mu=8$ (New Yorkers sleep 8 hrs per night on average.) H_A : $\mu\neq 8$ (New Yorkers sleep less or more than 8 hrs per night on average.) (b) Independence: The sample is random. The min/max suggest there are no concerning outliers. T=-1.75. df=25-1=24. (c) p-value = 0.093. If in fact the true population mean of the amount New Yorkers sleep per night was 8 hours, the probability of getting a random sample of 25 New Yorkers where the average amount of sleep is 7.73 hours per night or less (or 8.27 hours or more) is 0.093. (d) Since p-value > 0.05, do not reject H_0 . The data do not provide strong evidence that New Yorkers sleep more or less than 8 hours per night on average. (e) No, since the p-value is smaller than 1-0.90=0.10.