

## Practice Exercises: Lesson 5.1 Solutions

Diez, D. M., Çetinkaya-Rundel, M., Barr, C. D. (2019). OpenIntro Statistics (4th ed.). OpenIntro. https://www.openintro.org/book/os/ CC BY-SA 3.0

STAT 1201 Introduction to Probability and Statistics

ONLINE AND DISTANCE EDUCATION

**6.37**  $H_0$ : The opinion of college grads and non-grads is not different on the topic of drilling for oil and natural gas off the coast of California.  $H_A$ : Opinions regarding the drilling for oil and natural gas off the coast of California has an association with earning a college degree.

$$E_{row 1,col 1} = 151.5 \qquad E_{row 1,col 2} = 134.5$$
$$E_{row 2,col 1} = 162.1 \qquad E_{row 2,col 2} = 143.9$$
$$E_{row 3,col 1} = 124.5 \qquad E_{row 3,col 2} = 110.5$$

Independence: The samples are both random, unrelated, and from less than 10% of the population, so independence between observations is reasonable. Sample size: All expected counts are at least 5.  $\chi^2 = 11.47$ ,  $df = 2 \rightarrow$  p-value = 0.003. Since the p-value  $< \alpha$ , we reject  $H_0$ . There is strong evidence that there is an association between support for offshore drilling and having a college degree.

**6.39** No. The samples at the beginning and at the end of the semester are not independent since the survey is conducted on the same students.

**6.41** (a)  $H_0$ : The age of Los Angeles residents is independent of shipping carrier preference variable.  $H_A$ : The age of Los Angeles residents is associated with the shipping carrier preference variable. (b) The conditions are not satisfied since some expected counts are below 5.

**6.43** (a) Independence is satisfied (random sample), as is the success-failure condition (40 smokers, 160 non-smokers). The 95% CI: (0.145, 0.255). We are 95% confident that 14.5% to 25.5% of all students at this university smoke. (b) We want  $z^*SE$  to be no larger than 0.02 for a 95% confidence level. We use  $z^* = 1.96$  and plug in the point estimate  $\hat{p} = 0.2$  within the SE formula:  $1.96\sqrt{0.2(1-0.2)/n} \leq 0.02$ . The sample size *n* should be at least 1,537.

**6.45** (a) Proportion of graduates from this university who found a job within one year of graduating.  $\hat{p} = 348/400 = 0.87$ . (b) This is a random sample,

## 7 Inference for numerical data

**7.1** (a) df = 6 - 1 = 5,  $t_5^* = 2.02$  (column with two tails of 0.10, row with df = 5). (b) df = 21 - 1 = 20,  $t_{20}^* = 2.53$  (column with two tails of 0.02, row with df = 20). (c) df = 28,  $t_{28}^* = 2.05$ . (d) df = 11,  $t_{11}^* = 3.11$ .

**7.3** (a) 0.085, do not reject  $H_0$ . (b) 0.003, reject  $H_0$ . (c) 0.438, do not reject  $H_0$ . (d) 0.042, reject  $H_0$ .

**7.5** The mean is the midpoint:  $\bar{x} = 20$ . Identify the margin of error: ME = 1.015, then use  $t_{35}^{\star} = 2.03$  and  $SE = s/\sqrt{n}$  in the formula for margin of error to identify s = 3.

so the observations are independent. Success-failure condition is satisfied: 348 successes, 52 failures, both well above 10. (c) (0.8371, 0.9029). We are 95% confident that approximately 84% to 90% of graduates from this university found a job within one year of completing their undergraduate degree. (d) 95% of such random samples would produce a 95% confidence interval that includes the true proportion of students at this university who found a job within one year of graduating from college. (e) (0.8267, 0.9133). Similar interpretation as before. (f) 99% CI is wider, as we are more confident that the true proportion is within the interval and so need to cover a wider range.

**6.47** Use a chi-squared goodness of fit test.  $H_0$ : Each option is equally likely.  $H_A$ : Some options are preferred over others. Total sample size: 99. Expected counts: (1/3) \* 99 = 33 for each option. These are all above 5, so conditions are satisfied. df =3-1=2 and  $\chi^2 = \frac{(43-33)^2}{33} + \frac{(21-33)^2}{33} + \frac{(35-33)^2}{33} =$  $7.52 \rightarrow$  p-value = 0.023. Since the p-value is less than 5%, we reject  $H_0$ . The data provide convincing evidence that some options are preferred over others.

**6.49** (a)  $H_0$  : p = 0.38.  $H_A$  :  $p \neq 0.38$ . Independence (random sample) and the success-failure condition are satisfied.  $Z = -20.5 \rightarrow \text{p-value} \approx 0.$ Since the p-value is very small, we reject  $H_0$ . The data provide strong evidence that the proportion of Americans who only use their cell phones to access the internet is different than the Chinese proportion of 38%, and the data indicate that the proportion is lower in the US. (b) If in fact 38% of Americans used their cell phones as a primary access point to the internet, the probability of obtaining a random sample of 2,254 Americans where 17% or less or 59% or more use their only their cell phones to access the internet would be approximately 0. (c) (0.1545, 0.1855). We are 95% confident that approximately 15.5% to 18.6% of all Americans primarily use their cell phones to browse the internet.

**7.7** (a)  $H_0$ :  $\mu = 8$  (New Yorkers sleep 8 hrs per night on average.)  $H_A$ :  $\mu \neq 8$  (New Yorkers sleep less or more than 8 hrs per night on average.) (b) Independence: The sample is random. The min/max suggest there are no concerning outliers. T = -1.75. df = 25 - 1 = 24. (c) p-value = 0.093. If in fact the true population mean of the amount New Yorkers sleep per night was 8 hours, the probability of getting a random sample of 25 New Yorkers where the average amount of sleep is 7.73 hours per night or less (or 8.27 hours or more) is 0.093. (d) Since p-value > 0.05, do not reject  $H_0$ . The data do not provide strong evidence that New Yorkers sleep more or less than 8 hours per night on average. (e) No, since the p-value is smaller than 1 - 0.90 = 0.10. **7.9** T is either -2.09 or 2.09. Then  $\bar{x}$  is one of the following:

$$-2.09 = \frac{\bar{x} - 60}{\frac{8}{\sqrt{20}}} \rightarrow \bar{x} = 56.26$$
$$2.09 = \frac{\bar{x} - 60}{\frac{8}{\sqrt{20}}} \rightarrow \bar{x} = 63.74$$

**7.11** (a) We will conduct a 1-sample *t*-test.  $H_0$ :  $\mu = 5$ .  $H_A$ :  $\mu \neq 5$ . We'll use  $\alpha = 0.05$ . This is a random sample, so the observations are independent. To proceed, we assume the distribution of years of piano lessons is approximately normal.  $SE = 2.2/\sqrt{20} = 0.4919$ . The test statistic is T = (4.6 - 5)/SE = -0.81. df = 20 - 1 = 19. The one-tail area is about 0.21, so the p-value is about 0.42, which is bigger than  $\alpha = 0.05$  and we do not reject  $H_0$ . That is, we do not have sufficiently strong evidence to reject the notion that the average is 5 years.

(b) Using SE = 0.4919 and  $t_{df=19}^{\star} = 2.093$ , the confidence interval is (3.57, 5.63). We are 95% confident that the average number of years a child takes piano lessons in this city is 3.57 to 5.63 years.

(c) They agree, since we did not reject the null hypothesis and the null value of 5 was in the *t*-interval.

**7.13** If the sample is large, then the margin of error will be about  $1.96 \times 100/\sqrt{n}$ . We want this value to be less than 10, which leads to  $n \ge 384.16$ , meaning we need a sample size of at least 385 (round up for sample size calculations!).

**7.15** Paired, data are recorded in the same cities at two different time points. The temperature in a city at one point is not independent of the temperature in the same city at another time point.

7.17 (a) Since it's the same students at the beginning and the end of the semester, there is a pairing between the datasets, for a given student their beginning and end of semester grades are dependent. (b) Since the subjects were sampled randomly, each observation in the men's group does not have a special correspondence with exactly one observation in the other (women's) group. (c) Since it's the same subjects at the beginning and the end of the study, there is a pairing between the datasets, for a subject student their beginning and end of semester artery thickness are dependent. (d) Since it's the same subjects at the beginning and the end of the study, there is a pairing between the datasets, for a subject student their beginning and end of semester weights are dependent.

**7.19** (a) For each observation in one data set, there is exactly one specially corresponding observation in the other data set for the same geographic location. The data are paired. (b)  $H_0: \mu_{\text{diff}} = 0$  (There is no difference in average number of days exceeding 90°F

in 1948 and 2018 for NOAA stations.)  $H_A: \mu_{\text{diff}} \neq 0$ (There is a difference.) (c) Locations were randomly sampled, so independence is reasonable. The sample size is at least 30, so we're just looking for particularly extreme outliers: none are present (the observation off left in the histogram would be considered a clear outlier, but not a particularly extreme one). Therefore, the conditions are satisfied. (d)  $SE = 17.2/\sqrt{197} = 1.23$ .  $T = \frac{2.9-0}{1.23} = 2.36$  with degrees of freedom df = 197 - 1 = 196. This leads to a one-tail area of 0.0096 and a p-value of about 0.019. (e) Since the p-value is less than 0.05, we reject  $H_0$ . The data provide strong evidence that NOAA stations observed more 90°F days in 2018 than in 1948. (f) Type 1 Error, since we may have incorrectly rejected  $H_0$ . This error would mean that NOAA stations did not actually observe a decrease, but the sample we took just so happened to make it appear that this was the case. (g) No, since we rejected  $H_0$ , which had a null value of 0.

**7.21** (a) SE = 1.23 and  $t^* = 1.65$ .  $2.9 \pm 1.65 \times 1.23 \rightarrow (0.87, 4.93)$ .

(b) We are 90% confident that there was an increase of 0.87 to 4.93 in the average number of days that hit 90°F in 2018 relative to 1948 for NOAA stations.(c) Yes, since the interval lies entirely above 0.

**7.23** (a) These data are paired. For example, the Friday the 13th in say, September 1991, would probably be more similar to the Friday the 6th in September 1991 than to Friday the 6th in another month or year.

(b) Let  $\mu_{diff} = \mu_{sixth} - \mu_{thirteenth}$ .  $H_0: \mu_{diff} = 0$ .  $H_A: \mu_{diff} \neq 0$ .

(c) Independence: The months selected are not random. However, if we think these dates are roughly equivalent to a simple random sample of all such Friday 6th/13th date pairs, then independence is reasonable. To proceed, we must make this strong assumption, though we should note this assumption in any reported results. Normality: With fewer than 10 observations, we would need to see clear outliers to be concerned. There is a borderline outlier on the right of the histogram of the differences, so we would want to report this in formal analysis results.

(d) T = 4.93 for  $df = 10 - 1 = 9 \rightarrow \text{p-value} = 0.001$ . (e) Since p-value < 0.05, reject  $H_0$ . The data provide strong evidence that the average number of cars at the intersection is higher on Friday the 6<sup>th</sup> than on Friday the 13<sup>th</sup>. (We should exercise caution about generalizing the interpretation to all intersections or roads.)

(f) If the average number of cars passing the intersection actually was the same on Friday the  $6^{\text{th}}$  and  $13^{th}$ , then the probability that we would observe a test statistic so far from zero is less than 0.01.

(g) We might have made a Type 1 Error, i.e. incorrectly rejected the null hypothesis.

**7.45** (a)  $H_0$ : Average score difference is the same for all treatments.  $H_A$ : At least one pair of means are different. (b) We should check conditions. If we look back to the earlier exercise, we will see that the patients were randomized, so independence is satisfied. There are some minor concerns about skew, especially with the third group, though this may be acceptable. The standard deviations across the groups are reasonably similar. Since the p-value is less than 0.05, reject  $H_0$ . The data provide convincing evidence of a difference between the average reduction in score among treatments. (c) We determined that at least two means are different in part (b), so we now conduct  $K = 3 \times 2/2 = 3$  pairwise *t*-tests that each use  $\alpha = 0.05/3 = 0.0167$  for a significance level. Use the following hypotheses for each pairwise test.  $H_0$ : The two means are equal.  $H_A$ : The two means are different. The sample sizes are equal and we use the pooled SD, so we can compute SE = 3.7 with the pooled df = 39. The p-value for Trmt 1 vs. Trmt 3 is the only one under 0.05: p-value = 0.035 (or 0.024 if using  $s_{pooled}$  in place of  $s_1$  and  $s_3$ , though this won't affect the final conclusion). The p-value is larger than 0.05/3 = 1.67, so we do not have strong evidence to conclude that it is this particular pair of groups that are different. That is, we cannot identify if which particular pair of groups are actually different, even though we've rejected the notion that they are all the same!

**7.47**  $H_0: \mu_T = \mu_C$ .  $H_A: \mu_T \neq \mu_C$ . T = 2.24,  $df = 21 \rightarrow$  p-value = 0.036. Since p-value < 0.05, reject  $H_0$ . The data provide strong evidence that the average food consumption by the patients in the treatment and control groups are different. Furthermore, the data indicate patients in the distracted eating (treatment) group consume more food than patients in the control group.

**7.49** False. While it is true that paired analysis requires equal sample sizes, only having the equal sample sizes isn't, on its own, sufficient for doing a paired test. Paired tests require that there be a special correspondence between each pair of observations in the two groups.

**7.51** (a) We are building a distribution of sample statistics, in this case the sample mean. Such a distribution is called a sampling distribution. (b) Because we are dealing with the distribution of sample means, we need to check to see if the Central Limit Theorem applies. Our sample size is greater than 30,

and we are told that random sampling is employed. With these conditions met, we expect that the distribution of the sample mean will be nearly normal and therefore symmetric. (c) Because we are dealing with a sampling distribution, we measure its variability with the standard error.  $SE = 18.2/\sqrt{45} = 2.713$ . (d) The sample means will be more variable with the smaller sample size.

**7.53** (a) We should set 1.0% equal to 2.84 standard errors:  $2.84 \times SE_{desired} = 1.0\%$  (see Example 7.37 on page 282 for details). This means the standard error should be about SE = 0.35% to achieve the desired statistical power.

(b) The margin of error was  $0.5 \times (2.6\% - (-0.2\%)) = 1.4\%$ , so the standard error in the experiment must have been  $1.96 \times SE_{original} = 1.4\% \rightarrow SE_{original} = 0.71\%$ .

(c) The standard error decreases with the square root of the sample size, so we should increase the sample size by a factor of  $2.03^2 = 4.12$ .

(d) The team should run an experiment 4.12 times larger, so they should have a random sample of 4.12% of their users in each of the experiment arms in the new experiment.

**7.55** Independence: it is a random sample, so we can assume that the students in this sample are independent of each other with respect to number of exclusive relationships they have been in. Notice that there are no students who have had no exclusive relationships in the sample, which suggests some student responses are likely missing (perhaps only positive values were reported). The sample size is at least 30, and there are no particularly extreme outliers, so the normality condition is reasonable. 90% CI: (2.97, 3.43). We are 90% confident that undergraduate students have been in 2.97 to 3.43 exclusive relationships, on average.

**7.57** The hypotheses should be about the population mean  $(\mu)$ , not the sample mean. The null hypothesis should have an equal sign and the alternative hypothesis should be about the null hypothesized value, not the observed sample mean. Correction:

$$H_0: \mu = 10 \ hours$$
  
 $H_A: \mu \neq 10 \ hours$ 

A two-sided test allows us to consider the possibility that the data show us something that we would find surprising.