

Practice Exercises: Lesson 5.3 Solutions

Diez, D. M., Çetinkaya-Rundel, M., Barr, C. D. (2019). OpenIntro Statistics (4th ed.). OpenIntro. https://www.openintro.org/book/os/ CC BY-SA 3.0

STAT 1201 Introduction to Probability and Statistics

ONLINE AND DISTANCE EDUCATION

7.25 (a) H_0 : $\mu_{diff} = 0$. H_A : $\mu_{diff} \neq 0$. T = -2.71. df = 5. p-value = 0.042. Since pvalue < 0.05, reject H_0 . The data provide strong evidence that the average number of traffic accident related emergency room admissions are different between Friday the 6th and Friday the 13th. Furthermore, the data indicate that the direction of that difference is that accidents are lower on Friday the 6^{th} relative to Friday the 13th.

(b) (-6.49, -0.17).

(c) This is an observational study, not an experiment, so we cannot so easily infer a causal intervention implied by this statement. It is true that there is a difference. However, for example, this does not mean that a responsible adult going out on Friday the 13^{th} has a higher chance of harm than on any other night.

7.27 (a) Chicken fed linseed weighed an average of 218.75 grams while those fed horsebean weighed an average of 160.20 grams. Both distributions are relatively symmetric with no apparent outliers. There is more variability in the weights of chicken fed linseed. (b) $H_0: \mu_{ls} = \mu_{hb}$. $H_A: \mu_{ls} \neq \mu_{hb}$.

We leave the conditions to you to consider.

 $T = 3.02, df = min(11, 9) = 9 \rightarrow \text{p-value} = 0.014.$ Since p-value < 0.05, reject H_0 . The data provide strong evidence that there is a significant difference between the average weights of chickens that were fed linseed and horsebean.

(c) Type 1 Error, since we rejected H_0 .

(d) Yes, since p-value > 0.01, we would not have rejected H_0 .

7.29 $H_0: \mu_C = \mu_S$. $H_A: \mu_C \neq \mu_S$. T = 3.27, $df = 11 \rightarrow \text{p-value} = 0.007$. Since p-value < 0.05, reject H_0 . The data provide strong evidence that the average weight of chickens that were fed case in is different than the average weight of chickens that were fed soybean (with weights from case being higher). Since this is a randomized experiment, the observed difference can be attributed to the diet.

7.31 Let $\mu_{diff} = \mu_{pre} - \mu_{post}$. $H_0 : \mu_{diff} = 0$: Treatment has no effect. $H_A: \mu_{diff} \neq 0$: Treatment has an effect on P.D.T. scores, either positive or negative. Conditions: The subjects are randomly assigned to treatments, so independence within and between groups is satisfied. All three sample sizes are smaller than 30, so we look for clear outliers. There is a borderline outlier in the first treatment group. Since it is borderline, we will proceed, but we should report this caveat with any results. For all three groups: df = 13. $T_1 = 1.89 \rightarrow \text{p-value} =$ $0.081, T_2 = 1.35 \rightarrow \text{p-value} = 0.200, T_3 = -1.40 \rightarrow$ (p-value = 0.185). We do not reject the null hypothesis for any of these groups. As earlier noted, there is some uncertainty about if the method applied is reasonable for the first group.

7.33 Difference we care about: 40. Single tail of 90%: $1.28 \times SE$. Rejection region bounds: $\pm 1.96 \times SE$ (if 5% significance level). Setting $3.24 \times SE = 40$, subbing in $SE = \sqrt{\frac{94^2}{n} + \frac{94^2}{n}}$, and solving for the sample size *n* gives 116 plots of land for each fertilizer. **7.35** Alternative.

7.37 H_0 : $\mu_1 = \mu_2 = \cdots = \mu_6$. H_A : The average weight varies across some (or all) groups. Independence: Chicks are randomly assigned to feed types (presumably kept separate from one another), therefore independence of observations is reasonable. Approx. normal: the distributions of weights within each feed type appear to be fairly symmetric. Constant variance: Based on the side-by-side box plots, the constant variance assumption appears to be reasonable. There are differences in the actual computed standard deviations, but these might be due to chance as these are quite small samples. $F_{5,65} =$ 15.36 and the p-value is approximately 0. With such a small p-value, we reject H_0 . The data provide convincing evidence that the average weight of chicks varies across some (or all) feed supplement groups.

7.39 (a) H_0 : The population mean of MET for each group is equal to the others. H_A : At least one pair of means is different. (b) Independence: We don't have any information on how the data were collected, so we cannot assess independence. To proceed, we must assume the subjects in each group are independent. In practice, we would inquire for more details. Normality: The data are bound below by zero and the standard deviations are larger than the means, indicating very strong skew. However, since the sample sizes are extremely large, even extreme skew is acceptable. Constant variance: This condition is sufficiently met, as the standard deviations are reasonably consistent across groups. (c) See below, with the last column omitted:

	Df	Sum Sq	Mean Sq	F value
coffee	4	10508	2627	5.2
Residuals	50734	25564819	504	
Total	50738	25575327		

(d) Since p-value is very small, reject H_0 . The data provide convincing evidence that the average MET differs between at least one pair of groups.

7.41 (a) H_0 : Average GPA is the same for all majors. H_A : At least one pair of means are different. (b) Since p-value > 0.05, fail to reject H_0 . The data do not provide convincing evidence of a difference between the average GPAs across three groups of majors. (c) The total degrees of freedom is 195+2 = 197, so the sample size is 197 + 1 = 198.

7.43 (a) False. As the number of groups increases, so does the number of comparisons and hence the modified significance level decreases. (b) True. (c) True. (d) False. We need observations to be independent regardless of sample size.

7.45 (a) H_0 : Average score difference is the same for all treatments. H_A : At least one pair of means are different. (b) We should check conditions. If we look back to the earlier exercise, we will see that the patients were randomized, so independence is satisfied. There are some minor concerns about skew, especially with the third group, though this may be acceptable. The standard deviations across the groups are reasonably similar. Since the p-value is less than 0.05, reject H_0 . The data provide convincing evidence of a difference between the average reduction in score among treatments. (c) We determined that at least two means are different in part (b), so we now conduct $K = 3 \times 2/2 = 3$ pairwise *t*-tests that each use $\alpha = 0.05/3 = 0.0167$ for a significance level. Use the following hypotheses for each pairwise test. H_0 : The two means are equal. H_A : The two means are different. The sample sizes are equal and we use the pooled SD, so we can compute SE = 3.7 with the pooled df = 39. The p-value for Trmt 1 vs. Trmt 3 is the only one under 0.05: p-value = 0.035 (or 0.024 if using s_{pooled} in place of s_1 and s_3 , though this won't affect the final conclusion). The p-value is larger than 0.05/3 = 1.67, so we do not have strong evidence to conclude that it is this particular pair of groups that are different. That is, we cannot identify if which particular pair of groups are actually different, even though we've rejected the notion that they are all the same!

7.47 $H_0: \mu_T = \mu_C$. $H_A: \mu_T \neq \mu_C$. T = 2.24, $df = 21 \rightarrow$ p-value = 0.036. Since p-value < 0.05, reject H_0 . The data provide strong evidence that the average food consumption by the patients in the treatment and control groups are different. Furthermore, the data indicate patients in the distracted eating (treatment) group consume more food than patients in the control group.

7.49 False. While it is true that paired analysis requires equal sample sizes, only having the equal sample sizes isn't, on its own, sufficient for doing a paired test. Paired tests require that there be a special correspondence between each pair of observations in the two groups.

7.51 (a) We are building a distribution of sample statistics, in this case the sample mean. Such a distribution is called a sampling distribution. (b) Because we are dealing with the distribution of sample means, we need to check to see if the Central Limit Theorem applies. Our sample size is greater than 30,

and we are told that random sampling is employed. With these conditions met, we expect that the distribution of the sample mean will be nearly normal and therefore symmetric. (c) Because we are dealing with a sampling distribution, we measure its variability with the standard error. $SE = 18.2/\sqrt{45} = 2.713$. (d) The sample means will be more variable with the smaller sample size.

7.53 (a) We should set 1.0% equal to 2.84 standard errors: $2.84 \times SE_{desired} = 1.0\%$ (see Example 7.37 on page 282 for details). This means the standard error should be about SE = 0.35% to achieve the desired statistical power.

(b) The margin of error was $0.5 \times (2.6\% - (-0.2\%)) = 1.4\%$, so the standard error in the experiment must have been $1.96 \times SE_{original} = 1.4\% \rightarrow SE_{original} = 0.71\%$.

(c) The standard error decreases with the square root of the sample size, so we should increase the sample size by a factor of $2.03^2 = 4.12$.

(d) The team should run an experiment 4.12 times larger, so they should have a random sample of 4.12% of their users in each of the experiment arms in the new experiment.

7.55 Independence: it is a random sample, so we can assume that the students in this sample are independent of each other with respect to number of exclusive relationships they have been in. Notice that there are no students who have had no exclusive relationships in the sample, which suggests some student responses are likely missing (perhaps only positive values were reported). The sample size is at least 30, and there are no particularly extreme outliers, so the normality condition is reasonable. 90% CI: (2.97, 3.43). We are 90% confident that undergraduate students have been in 2.97 to 3.43 exclusive relationships, on average.

7.57 The hypotheses should be about the population mean (μ) , not the sample mean. The null hypothesis should have an equal sign and the alternative hypothesis should be about the null hypothesized value, not the observed sample mean. Correction:

$$H_0: \mu = 10 \ hours$$

 $H_A: \mu \neq 10 \ hours$

A two-sided test allows us to consider the possibility that the data show us something that we would find surprising.