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8.39 (a) The point estimate and standard error are

b1 = 0.9112 and SE = 0.0259. We can compute

a T-score: T = (0.9112 − 1)/0.0259 = −3.43. Us-

ing df = 168, the p-value is about 0.001, which

is less than α = 0.05. That is, the data provide

strong evidence that the average difference between

husbands’ and wives’ ages has actually changed over

time. (b) âgeW = 1.5740 + 0.9112×ageH . (c) Slope:

For each additional year in husband’s age, the model

predicts an additional 0.9112 years in wife’s age. This

means that wives’ ages tend to be lower for later

ages, suggesting the average gap of husband and

wife age is larger for older people. Intercept: Men

who are 0 years old are expected to have wives who

are on average 1.5740 years old. The intercept here

is meaningless and serves only to adjust the height

of the line. (d) R =
√

0.88 = 0.94. The regres-

sion of wives’ ages on husbands’ ages has a positive

slope, so the correlation coefficient will be positive.

(e) âgeW = 1.5740 + 0.9112 × 55 = 51.69. Since R2

is pretty high, the prediction based on this regres-

sion model is reliable. (f) No, we shouldn’t use the

same model to predict an 85 year old man’s wife’s

age. This would require extrapolation. The scatter-

plot from an earlier exercise shows that husbands in

this data set are approximately 20 to 65 years old.

The regression model may not be reasonable outside

of this range.

8.41 There is an upwards trend. However, the vari-

ability is higher for higher calorie counts, and it looks

like there might be two clusters of observations above

and below the line on the right, so we should be cau-

tious about fitting a linear model to these data.

8.43 (a) r = −0.72 → (2) (b) r = 0.07 → (4)

(c) r = 0.86→ (1) (d) r = 0.99→ (3)

9 Multiple and logistic regression

9.1 (a) ̂baby weight = 123.05−8.94×smoke (b) The

estimated body weight of babies born to smoking

mothers is 8.94 ounces lower than babies born to non-

smoking mothers. Smoker: 123.05−8.94×1 = 114.11

ounces. Non-smoker: 123.05 − 8.94 × 0 = 123.05

ounces. (c) H0: β1 = 0. HA: β1 6= 0. T = −8.65,

and the p-value is approximately 0. Since the p-value

is very small, we reject H0. The data provide strong

evidence that the true slope parameter is different

than 0 and that there is an association between birth

weight and smoking. Furthermore, having rejected

H0, we can conclude that smoking is associated with

lower birth weights.

9.3 (a) ̂baby weight = −80.41 + 0.44 × gestation −
3.33 × parity − 0.01 × age + 1.15 × height + 0.05 ×
weight − 8.40 × smoke. (b) βgestation: The model

predicts a 0.44 ounce increase in the birth weight of

the baby for each additional day of pregnancy, all

else held constant. βage: The model predicts a 0.01

ounce decrease in the birth weight of the baby for

each additional year in mother’s age, all else held

constant. (c) Parity might be correlated with one of

the other variables in the model, which complicates

model estimation. (d) ̂baby weight = 120.58. e =

120 − 120.58 = −0.58. The model over-predicts this

baby’s birth weight. (e) R2 = 0.2504. R2
adj = 0.2468.

9.5 (a) (-0.32, 0.16). We are 95% confident that

male students on average have GPAs 0.32 points

lower to 0.16 points higher than females when con-

trolling for the other variables in the model. (b) Yes,

since the p-value is larger than 0.05 in all cases (not

including the intercept).

9.7 Remove age.

9.9 Based on the p-value alone, either gestation or

smoke should be added to the model first. However,

since the adjusted R2 for the model with gestation is

higher, it would be preferable to add gestation in the

first step of the forward- selection algorithm. (Other

explanations are possible. For instance, it would be

reasonable to only use the adjusted R2.)

9.11 She should use p-value selection since she is

interested in finding out about significant predictors,

not just optimizing predictions.

9.13 Nearly normal residuals: With so many obser-

vations in the data set, we look for particularly ex-

treme outliers in the histogram and do not see any.

variability of residuals: The scatterplot of the resid-

uals versus the fitted values does not show any over-

all structure. However, values that have very low or

very high fitted values appear to also have somewhat

larger outliers. In addition, the residuals do appear

to have constant variability between the two parity

and smoking status groups, though these items are

relatively minor.

Independent residuals: The scatterplot of residuals

versus the order of data collection shows a random

scatter, suggesting that there is no apparent struc-

tures related to the order the data were collected.

Linear relationships between the response variable

and numerical explanatory variables: The residuals

vs. height and weight of mother are randomly dis-

tributed around 0. The residuals vs. length of ges-

tation plot also does not show any clear or strong

remaining structures, with the possible exception of

very short or long gestations. The rest of the residu-

als do appear to be randomly distributed around 0.

All concerns raised here are relatively mild. There

are some outliers, but there is so much data that the

influence of such observations will be minor.
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9.15 (a) There are a few potential outliers, e.g. on

the left in the total length variable, but nothing

that will be of serious concern in a data set this

large. (b) When coefficient estimates are sensitive

to which variables are included in the model, this

typically indicates that some variables are collinear.

For example, a possum’s gender may be related to

its head length, which would explain why the coef-

ficient (and p-value) for sex male changed when we

removed the head length variable. Likewise, a pos-

sum’s skull width is likely to be related to its head

length, probably even much more closely related than

the head length was to gender.

9.17 (a) The logistic model relating p̂i to the pre-

dictors may be written as log
(

p̂i
1−p̂i

)
= 33.5095 −

1.4207×sex malei−0.2787×skull widthi+0.5687×
total lengthi − 1.8057 × tail lengthi. Only total

length has a positive association with a possum be-

ing from Victoria. (b) p̂ = 0.0062. While the proba-

bility is very near zero, we have not run diagnostics

on the model. We might also be a little skeptical that

the model will remain accurate for a possum found

in a US zoo. For example, perhaps the zoo selected a

possum with specific characteristics but only looked

in one region. On the other hand, it is encouraging

that the possum was caught in the wild. (Answers

regarding the reliability of the model probability will

vary.)

9.19 (a) False. When predictors are collinear, it

means they are correlated, and the inclusion of one

variable can have a substantial influence on the point

estimate (and standard error) of another. (b) True.

(c) False. This would only be the case if the data was

from an experiment and x1 was one of the variables

set by the researchers. (Multiple regression can be

useful for forming hypotheses about causal relation-

ships, but it offers zero guarantees.) (d) False. We

should check normality like we would for inference

for a single mean: we look for particularly extreme

outliers if n ≥ 30 or for clear outliers if n < 30.

9.21 (a) exclaim subj should be removed, since it’s

removal reduces AIC the most (and the resulting

model has lower AIC than the None Dropped model).

(b) Removing any variable will increase AIC, so we

should not remove any variables from this set.

9.23 (a) The equation is:

log

(
pi

1− pi

)
= −0.8124

− 2.6351× to multiple

+ 1.6272× winner

− 1.5881× format

− 3.0467× re subj

(b) First find log
(

p
1−p

)
, then solve for p:

log

(
p

1− p

)
= −0.8124− 2.6351× 0 + 1.6272× 1

− 1.5881× 0− 3.0467× 0

= 0.8148
p

1− p = e0.8148 → p = 0.693

(c) It should probably be pretty high, since it could

be very disruptive to the person using the email ser-

vice if they are missing emails that aren’t spam. Even

only a 90% chance that a message is spam is probably

enough to warrant keeping it in the inbox. Maybe a

probability of 99% would be a reasonable cutoff. As

for other ideas to make it even better, it may be worth

building a second model that tries to classify the im-

portance of an email message. If we have both the

spam model and the importance model, we now have

a better way to think about cost-benefit tradeoffs.

For instance, perhaps we would be willing to have

a lower probability-of-spam threshold for messages

we were confident were not important, and perhaps

we want an even higher probability threshold (e.g.

99.99%) for emails we are pretty sure are important.
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